РАДИОТЕХНИКА И ЭЛЕКТРОНИКА, 2012, том 57, № 12, с. 1289–1300

ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ

УДК 621.376.3

РЕКОНСТРУКЦИЯ ОТРАЖАТЕЛЬНЫХ ХАРАКТЕРИСТИК 3D-ОБЪЕКТОВ В ОДНОПОЗИЦИОННОЙ СИСТЕМЕ ОПТИЧЕСКОЙ ЛОКАЦИИ

© 2012 г. Л. В. Лабунец^{1, 2}, Д. С. Лукин³, А. А. Червяков¹

¹Московский государственный технический университет им. Н.Э. Баумана, Российская Федерация, 105005 Москва, 2-я Бауманская ул., 5 ²НОУ ВПО "Российский новый университет", Российская Федерация, 105005 Москва, ул. Радио, 22 ³Московский физико-технический институт (государственный университет), Российская Федерация, 141700 Долгопрудный Московской области, Институтский пер., 9 *Е-mail: labunetc@bmstu.ru* Поступила в редакцию 27.03.2012 г.

Представлена методика интеллектуального анализа отражательных характеристик 3D-объектов в однопозиционных системах оптической локации. Методом обращения свертки реализована коррекция профиля импульсной эффективной площади рассеяния (ЭПР) цели. На основе оценок временного положения точек перегиба импульсной ЭПР выделены ее непрерывная и "разрывная" компоненты. С помощью ЕМ-алгоритма получены параметры полигауссовской модели "разрывной" части переходной характеристики объекта локации.

ВВЕДЕНИЕ

В процессе проектирования модулей поддержки принятия решений в лазерно-телевизионных системах различного назначения возникает необходимость в формировании экспертной модели в виде набора информативных признаков для надежного распознавания и классификации целей. Рациональной информационной и методической основой решения этой задачи является представительная база данных, полученная в результате имитационного математического моделирования отраженных сигналов, и цифровая обработка результатов адекватного вычислительного эксперимента. Однако аппаратурная реализация необходимых характеристик приемоизлучающих блоков локатора сопряжена с рядом проблем технического и экономического характера.

В частности, результаты компьютерного моделирования показывают [1], что временной профиль импульсной эффективной площади рассеяния (ЭПР) утрачивает информацию о положении областей интенсивного отражения (так называемых "блестящих точек") на поверхности 3D-объекта, если длительность зондирующего импульса превышает 5 нс. Иными словами, аппаратурное выделение структурных составляющих отражательных характеристик целей как в оптическом [2], так и в радиолокационном [3] диапазонах спектра электромагнитных волн приводит к необходимости обработки сверхширокополосных (СШП) сигналов. Это не всегда оправдано по критерию цена-качество СШП-радара. Аналогичные сложности возникают, например, при исследовании изменения формы видеоимпульса при его распространении в дисперсной среде в виде однородной холодной плазмы [4].

Один из рациональных способов решения указанной проблемы состоит в применении блоков цифровой обработки сигналов (ЦОС), измеренных локатором для зондирующих импульсов относительно небольшой длительности. С этой точки зрения процедуру восстановления структурных составляющих импульсной или переходной характеристик объекта локации удобно представить в виде последовательности трех этапов ЦОС:

1) коррекции временного профиля импульсной ЭПР;

2) выделения ее структурных составляющих;

3) оценки параметров полигауссовской модели "разрывной" части переходной характеристики цели.

В данной работе рассмотрена методика интеллектуального анализа структурных составляющих отражательных характеристик 3D-объекта в однопозиционной системе лазерной локации.

1. КОРРЕКЦИЯ ВРЕМЕННОГО ПРОФИЛЯ ИМПУЛЬСНОЙ ЭПР

В общем случае временной профиль $A_{t_s}(t|\alpha,\beta)$ импульсной ЭПР является суммой двух структур-

Рис. 1. Импульсные ЭПР самолета МиГ-23 для зондирующего импульса длительностью 1 (1) и 5 нс (2).

ных составляющих [2] — непрерывной $A^{(\text{CONT})}$ и разрывной $A^{(\text{DISC})}$

$$A_{t_s}(t|\alpha,\beta) = A_{t_s}^{(\text{CONT})}(t|\alpha,\beta) + A_{t_s}^{(\text{DISC})}(t|\alpha,\beta).$$
(1)

Первая непрерывная и дифференцируемая компонента

$$A_{t_{S}}^{(\text{CONT})}(t|\alpha,\beta) = \int_{V_{\text{MHKC}}(t)}^{V_{\text{MHKC}}(t)} i_{S}(v) d_{\text{CONT}}(t-v|\alpha,\beta) dv \quad (2)$$

представляет собой свертку импульсной характеристики $d_{\text{CONT}}(t|\alpha,\beta)$ цели с нормированным зондирующим импульсом $\max\{i_s(t)\}=1$ заданной t формы $i_s(t)$ и конечной длительности t_s . Здесь α, β – сферические углы, задающие направление облучения – наблюдения (ракурс) объекта локации. В дальнейшем для сокращения записи там, где это не вызвано необходимостью, зависимость соответствующих характеристик цели от ракурса (α,β) будем опускать. Пределы интегрирования имеют вид

$$\begin{split} V_{\text{мин}}(t) &= \begin{cases} 0 & \text{для } 0 \leq t < T \\ t - T & \text{для } T \leq t \leq T + t_S; \end{cases} \\ V_{\text{макс}}(t) &= \begin{cases} t & \text{для } 0 \leq t < t_S \\ t_S & \text{для } t_S \leq t \leq T + t_S, \end{cases} \end{split}$$

где $cT(\alpha,\beta)/2$ – глубина сцены с фиксированного ракурса; c – скорость света. Физически непре-

рывная составляющая обусловлена рассеянием лазерного излучения гладкой (регулярной) частью поверхности 3D-объекта. Левый и правый сегменты импульсной характеристики $d_{\text{CONT}}(t)$ удобно дополнить нулями на интервалах времени $[-t_S, 0]$ и $[T, T + t_S]$. В этом случае пределы интегрирования в выражении (2) становятся постоянными от 0 до t_S .

Вторая "разрывная" компонента

$$A_{t_{S}}^{(\text{DISC})}(t | \alpha, \beta) = \sum_{n=1}^{N} A_{n}^{(S)} i_{S}(t - T_{n}^{(S)}),$$

$$T_{1}^{(S)} < T_{2}^{(S)} < \dots < T_{N}^{(S)}$$
(3)

представляет собой хронологическую последовательность зондирующих импульсов. Эта составляющая физически обусловлена наличием на поверхности цели локальных участков интенсивного отражения. Подобные "блестящие" области обладают важными информативными признаками в виде их количества $N(\alpha,\beta)$, значений ЭПР $A_n^{(S)}(\alpha,\beta)$ и удалений $cT_n^{(S)}(\alpha,\beta)/2$ областей относительно локатора.

Ясно, что такого рода информация о цели утрачивается по мере увеличения длительности t_s зондирующего импульса. Этот эффект иллюстрирует рис. 1. На нем представлены результаты имитационного цифрового моделирования временных профилей импульсной ЭПР самолета МиГ-23 со штатным лакокрасочным камуфлирующим

покрытием [1] для ракурса облучения — наблюдения $\alpha = \beta = 45^{\circ}$. Кривыми *1* и *2* на рисунке изображены ЭПР для длительностей гауссовского зондирующего импульса 1 и 5 нс (по уровню 0.1 от максимума) соответственно.

Один из вариантов решения подобной проблемы состоит в коррекции временного профиля ЭПР методом обращения свертки [5]. Гауссовский зондирующий импульс $i_{s,2}(t)$ относительно небольшой длительности, например $t_{s,2} = 5$ нс, представим в виде свертки

$$i_{S,2}(t) = \int_{0}^{\tau_{S}} g_{S}(v) i_{S,1}(t-v) dv, \qquad (4)$$

достаточно короткого импульса $i_{S,1}(t)$ длительностью, например, $t_{S,1} = 1$ нс и интегрированной с единицей $\int_{0}^{\tau_{S}} g_{S}(t) dt = 1$ гауссовской аппаратной функции $g_{S}(t)$, длительностью $\tau_{S} = t_{S,2} - t_{S,1}$. Здесь, как и ранее, левый и правый сегменты импульса $i_{S,1}(t)$ дополнены нулями на интервалах времени $[-\tau_{S}, 0]$ и $[t_{S,1}, t_{S,1} + \tau_{S}]$.

В результате подстановки формулы (4) в выражения (2) и (3) для структурных компонент импульсной ЭПР и изменения порядка операций суммирования и интегрирования, с учетом формулы (1) и несложных преобразований получим интегральное уравнение Фредгольма первого рода

$$\int_{0}^{\tau_{s}} g_{s}(v) A_{t_{s,1}}(t-v) dv = A_{t_{s,2}}(t)$$
(5)

для измеренной $A_{t_{S,2}}(t)$, $0 \le t \le T + t_{S,2}$, и восстанавливаемой $A_{t_{S,1}}(t)$, $0 \le t \le T + t_{S,1}$, отражательных характеристик 3D-объекта. Метод обращения свертки состоит в замене интеграла (5) его квадратурным приближением

$$\sum_{k=0}^{M} g_{S}\left\{ (m-k)\Delta t \right\} \Delta t A_{t_{S,1}}(k\Delta t) = A_{t_{S,2}}(m\Delta t)$$
$$m = 0, \dots, M.$$

Полученные оценки рационально интерпретировать как систему линейных алгебраических уравнений относительно дискретной модели $A_{t_{s,1}}(m\Delta t), m = \overline{0, M}$ временного профиля импульсной ЭПР. Здесь M и $\Delta t = (T + t_{s,2})/M$ – количество интервалов дискретизации и их величина для ЭПР $A_{t_{s,2}}(t)$, заданной набором значений $a_{m,2} = A_{t_{s,2}}(m\Delta t)$.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 57 № 12 2012

Систему уравнений относительно отсчетов $a_{m,1} = a_{t_{S,1}}(m\Delta t), m = \overline{0, M}$ восстанавливаемой ЭПР $A_{t_{S,1}}(t)$ удобно представить в матричной форме

 $\mathbf{G}\vec{a}_1 = \vec{a}_2, \quad \vec{a}_1 = (a_{0,1}, \dots, a_{M,1})^T, \quad \vec{a}_2 = (a_{0,2}, \dots, a_{M,2})^T,$

где **G** = { $g_{k,m}$ }, ($k, m = \overline{0, M}$) — симметричная ленточная матрица Грина размером (M + 1) × (M + 1). В соответствии с теоремой Мичелли гауссовские веса

$$g_{k,m} = \begin{cases} g_S\left\{(k-m)\Delta t\right\}\Delta t, & |k-m| \le L\\ 0, & |k-m| > L \end{cases}, \quad L = \frac{\tau_S}{2\Delta t}$$

обеспечивают несингулярность матрицы \mathbf{G} , т.е. ее обратимость.

Для устранения искажений дискретной модели \vec{a}_1 ЭПР в процессе ее реконструкции левые и правые сегменты векторов \vec{a}_1 , \vec{a}_2 и матрицу Грина **G** дополняют нулевыми элементами

$$\vec{b}_j = \left(\vec{z}_L^T \ \vec{a}_j^T \ \vec{z}_L^T\right)^T$$
, $j = 1, 2$, $\mathbf{F} = (\mathbf{Z}_L \ \mathbf{G} \ \mathbf{Z}_L)$,

где \vec{z}_L — вектор столбец, содержащий L нулей; \mathbf{Z}_L — матрица размером $(M+1) \times L$, содержащая нулевые элементы.

Численное решение полученной системы уравнений $\mathbf{F}\vec{b}_1 = \vec{b}_2$ находят, например, с помощью итерационного алгоритма Гаусса—Зейделя [5, с. 138]

$$\vec{b}_{1}[i] = \vec{b}_{1}[i-1] + \mu \vec{E}[i-1],$$

$$\vec{E}[i-1] = \vec{b}_{2} - \mathbf{F} \vec{b}_{1}[i-1], \quad i = 1, 2, \dots$$
 (6)

и ограничений типа неравенств

$$a_{1,1} \ge 0, \dots, a_{M,1} \ge 0,$$

где i — номер итерации; $1 \le \mu \le 2$ — параметр скорости сходимости алгоритма. Вычисления продолжают, если выполняются критерии наибольшего числа итераций $i \le I_{\text{макс}}$ и заметного изменения квадрата ошибок

$$|e[i+1] - e[i]| > \varepsilon_1 e[i], \ e[i] = ||\vec{E}[i]||^2$$

где $\varepsilon_1 > 0$ — заданный пользователем уровень значимости. В качестве начального приближения $\vec{a}_1[0]$ реконструируемой ЭПР естественно выбрать ее измеренную дискретную модель \vec{a}_2 .

На рис. 2 представлены результаты коррекции временного профиля $A_{t_{5,2}}(t)$ ЭПР самолета МиГ-23, рассчитанного для ракурса $\alpha = \beta = 45^{\circ}$ и гауссовского зондирующего импульса длительностью $t_{5,2} = 5$ нс. Восстановление импульсной ЭПР $A_{t_{5,1}}(t)$, соответствующей зондирующему импульсу длительностью $t_{5,1} = 1$ нс, выполнялось с помощью итерационного алгоритма (6) со следующими параметрами:

Рис. 2. Исходная импульсная ЭПР (1) и ее реконструкция (2). Ошибка восстановления временного профиля (3).

интервал дискретизации $\Delta t = 0.1$ нс; объем выборки M = 512;

параметр скорости сходимости $\mu = 1.5$;

наибольшее количество итераций $I_{\text{макс}} = 50;$ допуск изменения среднего квадрата ошибок $\varepsilon_1 = 0.0001.$

Кривыми *I* и *2* на рис. 2 представлены результаты соответственно имитационного цифрового моделирования импульсной ЭПР $A_{t_{S,1}}(t)$ и ее реконструкция $a_{t_{S,1}}(t)$ в масштабе левой шкалы. Кривая *3* – ошибка $A_{t_{S,1}}(t) - a_{t_{S,1}}(t)$ восстановления временного профиля ЭПР в масштабе правой шкалы. Рассмотренная выше методика правильно реконструировала десять из двенадцати импульсов "разрывной" составляющей ЭПР (3). Исключение составили два импульса во временном интервале от 4 до 7 нс, восстановленных как один импульс. Процесс сходимости алгоритма (6) по критерию квадрата ошибок e[i], i = 1, 2, ... иллюстрирует рис. 3.

2. СТРУКТУРНЫЕ СОСТАВЛЯЮЩИЕ ИМПУЛЬСНОЙ ЭПР

Результаты коррекции умеренно сглаженного временного профиля $A_{t_{5,2}}(t)$ ЭПР наглядно показывают принципиальную возможность идентификации параметров структурных компонент пере-

ходной характеристики 3D-объекта. В частности, запаздывание $T_n^{(S,1)}$ хронологической последовательности зондирующих импульсов $i_{S,1}(t - T_n^{(S,1)})$, $n = \overline{1, N}$ для модели (3) "разрывной" составляющей $A_{t_{S,1}}^{(DISC)}(t)$ удается оценить с помощью анализа положения точек перегиба реконструированной импульсной ЭПР [6]. Необходимую для этого вторую производную сигнала $a_{t_{S,1}}(m\Delta t)$, $m = \overline{0, M}$ рационально рассчитывать с помощью локально взвешенной квадратичной регрессии, например, на основе цифровой модели наименьших квадратов, взвешенных расстоянием [7]. В рамках такого подхода сигнал $a_{t_{S,1}}(m\Delta t)$, $m = \overline{0, M}$ предварительно сглаживают достаточно коротким гауссовым импульсом $i_{S,3}(t)$ длительностью $t_{S,3}$.

$$a_{t_{S,3}}(m\Delta t) = \sum_{k=0}^{K} i_{S,3}(k\Delta t) a_{t_{S,1}}\{(m-k)\Delta t\}, \quad K = t_{S,3}/\Delta t.$$

Значения $a_{t_{S,3}}(k\Delta t)$, полученные для дискретных отсчетов времени $m - J \le k \le m + J$, аппроксимируют полиномом второй степени

$$\tilde{a}_{t_{S,3}}(k\Delta t|m) = p_0(m) + p_1(m)j + p_2(m)j^2, \qquad (7)$$
$$j = k - m.$$

Рис. 3. Сходимость рекуррентного алгоритма обращения свертки.

Текущие оптимальные коэффициенты $\vec{P}(m) = \{p_0(m), p_1(m), p_2(m)\}^T$, полинома выбирают из условия минимума взвешенной квадратичной ошибки аппроксимации

$$E\left\{\vec{P}(m)\right\} = \min\left\{\sum_{j=-J}^{J} w(j) \left(\tilde{a}_{t_{S,3}}\left(k\Delta t \mid m\right) - a_{t_{S,3}}\left(k\Delta t\right)\right)^{2}\right\},\$$
$$w(j) = \frac{\theta \exp\left(-\vartheta\sqrt{\gamma}\right)}{1 + \theta \exp\left(-\vartheta\sqrt{\gamma}\right)j^{2}},$$

где $\theta > 0$ и $\vartheta > 0$ – эмпирические коэффициенты; (1 + 2*J*) Δt и γ – временной интервал и параметр сглаживания сигнала. Вес w(j) квадрата ошибки обратно пропорционален "относительному" времени $j\Delta t$. Поэтому значимый вклад в оценку коэффициентов локальной квадратичной регрессии $\tilde{a}_{t_{S,3}}(k\Delta t|m)$ вносят лишь те наблюдения $a_{t_{S,3}}(k\Delta t)$, $|k-m| \leq J$, для которых отсчеты времени $k\Delta t$ близки к текущему моменту $m\Delta t$ по критерию веса w(j).

Минимизация указанной выше целевой функции приводится к системе нормальных линейных уравнений $\mathbf{C}(m)\vec{P}(m) = \vec{D}(m)$, где $\mathbf{C}(m)$ – взве-

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 57 № 12 2012

шенная "расстоянием" корреляционная матрица регрессора:

$$\mathbf{C}(m) = \begin{bmatrix} c_0(m) \ c_1(m) \ c_2(m) \\ c_1(m) \ c_2(m) \ c_3(m) \\ c_2(m) \ c_3(m) \ c_4(m) \end{bmatrix},$$
$$c_n(m) = \sum_{j=-J}^{J} j^n w(j), \ (n = \overline{0, 4}),$$

а $\bar{D}(m)$ — взвешенный "расстоянием" корреляционный вектор данных:

$$\vec{D}(m) = (d_0(m) \ d_1(m) \ d_2(m))^T,$$
$$d_n(m) = \sum_{j=-J}^J j^n w(j) a_{t_{S,3}}(k\Delta t), \ (n = 0, 1, 2)$$

Оценка второй производной сигнала $a_{t_{S1}}(m\Delta t)$,

 $m = \overline{0, M}$, основанная на его регрессионной модели (7), очевидно имеет вид

$$\frac{d^{2}}{dt^{2}} \{a_{t_{S,1}}(t)\}|_{t=m\Delta t} = = 2p_{2}(m) = \begin{vmatrix} c_{0}(m) & c_{1}(m) & d_{0}(m) \\ c_{1}(m) & c_{2}(m) & d_{1}(m) \\ c_{2}(m) & c_{3}(m) & d_{2}(m) \end{vmatrix} / \det \{\mathbf{C}(m)\}.$$
(8)

На рис. 4 представлены реконструированный временной профиль $a_{t_{s,1}}(t)$ (кривая *1* в масштабе левой шкалы) и результаты расчета по формуле (8)

Рис. 4. Реконструированная импульсная ЭПР (2) и ее вторая производная (1).

второй производной (кривая 2 в масштабе правой шкалы) импульсной ЭПР самолета МиГ-23. Вычисления выполнялись для следующих параметров предварительного сглаживания K = 8 и локально взвешенной квадратичной регрессии: $\theta = 0.1706; \ \theta = -9.5314; \ \gamma = 0.5; \ J = 4.$

Положение точек перегиба импульсной ЭПР $A_{t_{S,1}}(t)$ определяют по фактам $p_2(m-1)p_2(m) < 0$, $m = \overline{1, M}$ пересечения второй производной нулевого уровня. Дополнительное условие $a_{t_{S,1}}(t) > \max \{a_{t_{S,1}}(t)\}/R$ позволяет не учитывать точки перегиба на уровне "шумов" сигнала. На рис. 5 представлены результаты идентификации интервалов $[t_{2n-1}^{(S)}, t_{2n}^{(S)}]$, определяющих временное положение импульсов $i_S(t - T_n^{(S)})$, $n = \overline{1,11}$, "разрывной" компоненты (3) ЭПР самолета МиГ-23. Оценки получены для уровня ослабления R = 50.

Прореживание значений сигнала $a_{t_{S,1}}(t)$ и его последующая линейная интерполяция на интервалах $[t_{2n-1}^{(S)}, t_{2n}^{(S)}]$, $n = \overline{1, N}$, позволяют выделить непрерывную структурную составляющую $a_{t_{S,1}}^{(CONT)}(t)$ реконструированного временного профиля ЭПР. Очевидно, что "разрывную" компоненту рассчитывают по формуле

$$a_{t_{S,1}}^{(\text{DISC})}(t) = a_{t_{S,1}}(t) - a_{t_{S,1}}^{(\text{CONT})}(t)$$

Результаты такой процедуры оценки структурных составляющих импульсной ЭПР самолета МиГ-23, восстановленной для длительности гауссовского зондирующего импульса 1 нс и ракурса $\alpha = \beta = 45^{\circ}$, представлены на рис. 6 (1 – непрерывная компонента ЭПР, 2 – "разрывная"). Ложный фрагмент непрерывной составляющей на интервале от 2 до 7 нс обусловлен ошибками коррекции импульсной ЭПР (см. рис. 2).

3. ПОЛИГАУССОВСКАЯ МОДЕЛЬ "РАЗРЫВНОЙ" ЧАСТИ ПЕРЕХОДНОЙ ХАРАКТЕРИСТИКИ ЦЕЛИ

Параметрическое описание "разрывной" компоненты импульсной ЭПР позволяет решать такие практически важные задачи синтеза и анализа активных лазерных систем как:

 – цифровое моделирование локационных сигналов в режиме "реального времени";

 формирование информативных признаков для распознавания и классификации целей.

Физически интерпретируемой является, например, полигауссовская модель [6] "разрывной" части временного профиля ЭПР

$$A_{t_{s}}^{(\text{DISC})}(t) = \sum_{n=1}^{N} A_{n} i_{s}(t - T_{n}),$$
$$i_{s}(t) = \exp\{-(1 - 2t/t_{s})^{2} \ln 10\}$$

Рис. 5. Временное положение точек перегиба импульсной ЭПР.

Рис. 6. Оценки непрерывной (1) и "разрывной" (2) составляющих импульсной ЭПР самолета МиГ-23.

где N — количество областей интенсивного отражения, а A_n и $cT_n/2$ — ЭПР n-й области и ее удаление от локатора. Однако в рамках сформулированных выше задач рациональнее аппроксимировать "разрывную" составляющую временного профиля ЭПР, нормированную по площади

$$f(t) = a_{t_s}^{(\text{DISC})}(t)/A_0, \quad A_0 = \int_0^{T+t_s} a_{t_s}^{(\text{DISC})}(t)dt.$$

Эффективной, на наш взгляд, является модель конечной смеси

$$\tilde{f}(t|\vec{p}) = \sum_{n=1}^{N} W_n \tilde{f}_n(t|T_n, \sigma_n), \quad \sum_{n=1}^{N} W_n = 1, \quad (9)$$

например, гауссовских парциальных импульсных ЭПР

$$\tilde{f}_n(t|T_n,\sigma_n) = \frac{1}{\sigma_n\sqrt{2\pi}} \exp\left\{-\frac{D_n^2(t)}{2}\right\}, \ D_n(t) = \frac{t-T_n}{\sigma_n}$$

Здесь $\vec{p} = (W_1, ..., W_N, T_1, ..., T_N, ..., \sigma_1, ..., \sigma_N)$ – вектор параметров модели. Веса W_n , а также характеристики положения T_n и масштаба σ_n , $n = \overline{1, N}$, парциальных импульсов удобно оценивать с помощью модифицированного EM-алгоритма (*лат.* – Estimation–Maximization) [8]. В рамках такого подхода стандартной целью обучения модели (9) является максимизация функционала правдоподобия Фишера

$$\vec{p}\big|_{\text{опт}} = \operatorname{Arg}\max_{\vec{p}} \{L(\vec{p})\},$$

$$L(\vec{p}) = \int_{0}^{T+t_{S}} \ln\{\tilde{f}(t|\vec{p})\}f(t)dt.$$
(10)

На наш взгляд, рациональной целью обучения является также минимизация функционала расстояния Бхатачария

$$\vec{p}\big|_{\text{опт}} = \operatorname{Arg}\min_{\vec{p}} \{D(\vec{p})\},$$

$$D(\vec{p}) = -\ln\left\{\int_{0}^{T+t_{S}} \sqrt{\tilde{f}(t|\vec{p})f(t)}dt\right\}.$$
(11)

Решение этих задач условной оптимизации дает систему нелинейных уравнений [6] относительно параметров *р* импульсных ЭПР "блестящих" областей

$$\begin{cases} W_{n} = \frac{1}{R(\dot{p})} \int_{0}^{T+t_{s}} W(n|t,\dot{p})r(t|\dot{p})dt, \\ T_{n} = \frac{1}{W_{n}R(\dot{p})} \int_{0}^{T+t_{s}} tW(n|t,\dot{p})r(t|\dot{p})dt, \\ \sigma_{n}^{2} = \frac{1}{W_{n}R(\dot{p})} \int_{0}^{T+t_{s}} t^{2}W(n|t,\dot{p})r(t|\dot{p})dt - T_{n}^{2}, \\ n = \overline{1, N}. \end{cases}$$
(12)

Здесь $r(t|\vec{p})$ — весовая функция, определяемая функционалом качества оценок параметров смеси

$$r(t|\vec{p}) = \begin{cases} f(t), & \text{для правдоподобия,} \\ \sqrt{f(t|\vec{p})}f(t), & \text{для расстояния,} \end{cases}$$
$$R(\vec{p}) = \int_{0}^{T+t_{s}} r(t|\vec{p})dt;$$

 $W(n|t, \vec{p}) = W_n \tilde{f}_n(t|T_n, \sigma_n) / \tilde{f}(t|\vec{p})$ — апостериорный вес (надежность) ассоциации текущего отсчета f(t) нормированной "разрывной" составляющей импульсной ЭПР с *n*-ой областью интенсивного отражения на поверхности 3D-объекта. Важно отметить, что апостериорные веса реализуют механизм автоматической *мягкой* классификации отсчетов ЭПР по соответствующим отражающим областям на поверхности цели. Модель (9) оценивает надежность всех возможных гипотез, поэтому является адаптивной. Иными словами, модель способна подстраивать свои параметры к изменению ракурса наблюдения объекта локации.

Каноническая форма системы уравнений (12) позволят получать ее решение с помощью простейшего численного метода последовательных приближений. Соответствующий пошаговый алгоритм представлен в Приложении. В качестве начальных приближений параметров модели (9) рационально выбирать следующие [6]:

$$T_{n}[0] = \left(\tau_{2n-1}^{(S)} + \tau_{2n}^{(S)}\right) / 2; \quad \sigma_{n}[0] = \left(\tau_{2n}^{(S)} - \tau_{2n-1}^{(S)}\right) / 2;$$
$$w_{n}[0] = \int_{T_{n}[0] - 3\sigma_{n}[0]}^{T_{n}[0] + 3\sigma_{n}[0]} f(t) dt;$$
$$W_{n}[0] = w_{n}[0] / \sum_{k=1}^{N} w_{k}[0], \quad n = \overline{1, N}.$$

Оценки максимального правдоподобия параметров полигауссовской модели (9) для реконструированной "разрывной" составляющей $a_{t_{S,1}}^{(DISC)}(t)$ импульсной ЭПР самолета МиГ-23 представлены в таблице. Соответствующие модельные приближения $A_0 f(t|\vec{p})$ показаны на рис. 7. Кривые 1 в масштабе левой шкалы отвечают начальному приближению параметров (рис. 7а) и десятой итерации (рис. 7б). Кривые 2 в масштабе правой шкалы иллюстрируют заметное снижение ошибок аппроксимации

$$e(t) = a_{t_{S,1}}^{(\text{DISC})}(t) - A_0 \tilde{f}(t|\vec{p}).$$

Процесс сходимости модифицированного EM-алгоритма, основанного на критерии правдоподобия (10), демонстрирует рис. 8. Сходимость

п	Начальное приближение			Правдоподобие			Расстояние		
	$L(\vec{p}[0]) = -2.536725$ $D(\vec{p}[0]) = 0.020404$			$L(\vec{p}[10]) = -2.491977$ $D(\vec{p}[10]) = 0.006346$			$L(\vec{p}[10]) = -2.495230$ $D(\vec{p}[10]) = 0.006431$		
	$W_n[0]$	$T_n[0]$	$\sigma_n[0]$	$W_n[10]$	$T_n[10]$	$\sigma_n[10]$	$W_n[10]$	$T_n[10]$	$\sigma_n[10]$
1	0.041037	0.65	0.38	0.041126	0.71	0.29	0.040816	0.72	0.27
2	0.032732	2.90	0.33	0.032802	2.81	0.34	0.032772	2.81	0.33
3	0.046987	5.85	0.46	0.047153	5.79	0.52	0.047245	5.79	0.50
4	0.013909	8.80	0.33	0.013921	8.74	0.38	0.013926	8.74	0.37
5	0.007037	10.90	0.33	0.004936	10.96	0.34	0.004797	10.96	0.31
6	0.006049	12.10	0.33	0.004200	12.01	0.27	0.004098	12.01	0.25
7	0.015677	14.50	0.33	0.015512	14.49	0.28	0.015446	14.49	0.27
8	0.071579	16.70	0.33	0.071870	16.67	0.34	0.072093	16.67	0.32
9	0.160965	18.90	0.33	0.161619	18.90	0.36	0.162425	18.91	0.35
10	0.110003	28.60	0.33	0.110450	28.60	0.34	0.110594	28.60	0.33
11	0.172804	33.30	0.33	0.171981	33.31	0.36	0.171755	33.31	0.35
12	0.083061	35.25	0.29	0.084923	35.13	0.35	0.084391	35.13	0.33
13	0.238159	50.65	0.37	0.239125	50.52	0.30	0.239128	50.51	0.29

Оптимальные оценки параметров полигауссовской модели импульсной ЭПР

алгоритма достигается практически за три итерации обучения модели.

В таблице также представлены оценки параметров полигауссовской модели, полученные с помощью критерия минимума расстояния (11). В этом случае ЕМ-алгоритм сходится за четыре итерации (рис. 9). Важно отметить, что плавная сходимость алгоритма, основанного на критерии расстояния, подтверждает эффективность применения комбинированной цели обучения модели [8]. В частности, первую итерацию обучения рационально выполнять на основе критерия правдоподобия, что обеспечивает значительный шаг в область субоптимальных параметров. По-

Рис. 7. Аппроксимация "разрывной" составляющей импульсной ЭПР полигауссовской моделью: а – начальная; б – после 10-й итерации.

Рис. 8. Сходимость ЕМ-алгоритма на основе правдоподобия: 1 – правдоподобие; 2 – расстояние.

Рис. 9. Сходимость ЕМ-алгоритма на основе расстояния: 1 – правдоподобие; 2 – расстояние.

следующие итерации, основанные на критерии расстояния, обеспечивают точную настройку параметров модели.

В соответствии с результатами работы [2] реконструированная "разрывная" компонента переходной характеристики 3D-объекта имеет вид

$$h_{\text{DISC}}(t|\alpha,\beta) = A_0(\alpha,\beta) \sum_{n=1}^{N(\alpha,\beta)} W_n(\alpha,\beta) u\{t - T_n(\alpha,\beta)\},\$$

где u(t) — функция включения Хевисайда; $N(\alpha, \beta)$ — количество областей интенсивного отражения на

поверхности цели, наблюдаемой под ракурсом $(\alpha, \beta); A_0(\alpha, \beta) W_n(\alpha, \beta)$ и $cT_n(\alpha, \beta)/2 - ЭПР$ и удаление от локатора *n*-й "блестящей" области.

ЗАКЛЮЧЕНИЕ

В работе показана принципиальная возможность реконструкции импульсных отражательных характеристик 3D-объектов в однопозиционных лазерных системах при облучении цели умеренно короткими зондирующими импульсами. Необходимые для этого процедуры цифровой обработки результатов измерений могут быть реализованы как программно, так и аппаратно, например, с помощью нейронных сетей. Однако их практическая реализация требует, очевидно, применения приемного устройства с достаточно широкой полосой частот, что вносит дополнительные погрешности на уровне шумов измерений.

ПРИЛОЖЕНИЕ

МОДИФИЦИРОВАННЫЙ ЕМ-АЛГОРИТМ

Шаг О. Инициализация. Положим i = 0. Для заданного количества N областей интенсивного отражения выбрать начальные приближения

$$T_{n}[0] = \left(\tau_{2n-1}^{(S)} + \tau_{2n}^{(S)}\right) / 2; \quad \sigma_{n}[0] = \left(\tau_{2n}^{(S)} - \tau_{2n-1}^{(S)}\right) / 2;$$

$$t_{n} = T_{n}[0] - 3\sigma_{n}[0]; \quad M_{n} = 6\sigma_{n}[0] / \Delta t;$$

$$w_{n}[0] = \sum_{m=0}^{M_{n}} f(t_{n,m}); \quad t_{n,m} = t_{n} + m\Delta t;$$

$$W_{n}[0] = w_{n}[0] / \sum_{k=1}^{N} w_{k}[0], \quad n = \overline{1, N}$$

для компонентов вектора параметров $\vec{p}[0]$ модели (9) "разрывной" составляющей импульсной ЭПР цели. Здесь отсчеты времени t_n согласованы с исходной сеткой дискретизации $m\Delta t$, $m = \overline{0, M}$ временного профиля ЭПР (см. раздел 1).

В качестве цели обучения выбрать правдоподобие (10) или расстояние (11). Оценить качество модели по критериям правдоподобия

$$L(\vec{p}[0]) = \Delta t \sum_{m=0}^{M} \ln \left\{ \tilde{f}(m\Delta t | \vec{p}[0]) \right\} f(m\Delta t)$$

и расстояния

$$D(\vec{p}[0]) = -\ln\left\{\Delta t \sum_{m=0}^{M} \sqrt{\tilde{f}(m\Delta t | \vec{p}[0]) f(m\Delta t)}\right\}.$$

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 57 № 12 2012

Шаг 1. Оценивание. Положим i = i + 1. Вычислить элементы матрицы апостериорных весов

$$W(n, m | \vec{p}[i-1]) =$$

$$= W_n[i-1] \frac{\tilde{f}_n(m\Delta t | T_n[i-1], \sigma_n[i-1])}{\tilde{f}(m\Delta t | \vec{p}[i-1])}$$

$$n = \overline{1, N}, \quad m = \overline{0, M}$$

ассоциации текущего отсчета $f(m\Delta t)$ нормированной "разрывной" составляющей импульсной ЭПР с *n*-ой областью интенсивного отражения на поверхности 3D-объекта.

Обнулить ошибки вычислений парциальных нормированных ЭПР.

Если
$$W(n, m|\vec{p}[i-1])f(m\Delta t) < \varepsilon_2$$
,
mo $W(n, m|\vec{p}[i-1]) = 0$,

где $\epsilon_2 > 0$ — выбранный пользователем уровень значимости.

Шаг 2. Максимизация. Вычислить весовую функцию

$$\begin{split} r(m\Delta t|\vec{p}[i-1]) &= \\ &= \begin{cases} f(m\Delta t), & \text{для правдоподобия,} \\ \sqrt{f(m\Delta t|\vec{p}[i-1])f(m\Delta t)}, & \text{для расстояния,} \end{cases} \\ &\qquad m = \overline{0, M}; \\ &\qquad R(\vec{p}[i-1]) = \\ &= \begin{cases} 1, & \text{для правдоподобия,} \\ \Delta t \sum_{m=0}^{M} r(m\Delta t|\vec{p}[i-1]), & \text{для расстояния.} \end{cases} \end{split}$$

Обновить оценки параметров модели конечной смеси парциальных ЭПР

$$W_{n}[i] = \frac{\Delta t}{R(\vec{p}[i-1])} \times \\ \times \sum_{m=0}^{M} W(n, m | \vec{p}[i-1]) r(m\Delta t | \vec{p}[i-1]);$$
$$T_{n}[i] = \frac{(\Delta t)^{2}}{W_{n}[i]R(\vec{p}[i-1])} \sum_{m=0}^{M} m W(n, m | \vec{p}[i-1]) \times \\ \times r(m\Delta t | \vec{p}[i-1]);$$

$$\sigma_n^2[i] = \frac{(\Delta t)^3}{W_n[i]R(\dot{p}[i-1])} \sum_{m=0}^M m^2 W(n,m|\dot{p}[i-1]) \times r(m\Delta t|\dot{p}[i-1]) - T_n^2[i], \quad n = \overline{1,N}.$$

Оценить качество модели по критериям правдоподобия

$$L(\vec{p}[i]) = \Delta t \sum_{m=0}^{M} \ln \left\{ \tilde{f}(m\Delta t | \vec{p}[i]) \right\} f(m\Delta t)$$

и расстояния

$$D(\vec{p}[i]) = -\ln\left\{\Delta t \sum_{m=0}^{M} \sqrt{\tilde{f}(m\Delta t | \vec{p}[i]) f(m\Delta t)}\right\}.$$

Шаг 3. Критерии продолжения итераций. Если выполняется хотя бы одно из условий

$$\begin{split} \left| L(\vec{p}[i]) - L(\vec{p}[i-1]) \right| &> \varepsilon_3; \\ \left| D(\vec{p}[i]) - D(\vec{p}[i-1]) \right| &> \varepsilon_4; \quad i \le I_{\text{make}}. \end{split}$$

то идти к *шагу 1*. В противном случае закончить обучение модели. Здесь $I_{\text{макс}}$ – наибольшее число

итераций, $\varepsilon_{3,4} > 0$ — выбранные пользователем уровни значимости критериев сходимости алгоритма.

СПИСОК ЛИТЕРАТУРЫ

- Лабунец Л.В. Цифровые модели изображений целей и реализаций сигналов в оптических локационных системах: Учеб. пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2007.
- 2. Лабунец Л.В., Анищенко Н.Н. // РЭ. 2011. Т. 56. № 2. С. 163.
- 3. Иммореев И.Я. // РЭ. 2009. Т. 54. № 1. С. 5.
- 4. Крюковский А.С., Лукин Д.С., Растягаев Д.В. // Электромагнитные волны и электрон. системы. 2007. Т. 12. № 8. С. 15.
- 5. *Минами С., Утида Т., Кавата С. и др.* Обработка экспериментальных данных с использованием компьютера / Пер. с яп., под ред. Минами С. М.: Радио и связь, 1999.
- Goshtasby A., O'Neill W.D. // CVGIP: Graphical models and Image Processing. 1994. V. 56. № 4. P. 281.
- 7. McLain D.H. // Comp. J. 1974. V. 17. № 4. P. 318.
- 8. Лабунец Л.В. // РЭ. 2000. Т. 45. № 10. С. 1093.