# 

УДК 621.031:681.332.5

# КУМУЛЯНТНОЕ ПРИБЛИЖЕНИЕ МНОГОМЕРНОГО ВЕРОЯТНОСТНОГО РАСПРЕДЕЛЕНИЯ

© 2012 г. Л. В. Лабунец<sup>1</sup>, Н. Л. Лебедева, М. Ю. Чижов<sup>2</sup>

<sup>1</sup>Московский государственный технический университет им. Н.Э. Баумана, Российская Федерация, 105005 Москва, 2-я Бауманская ул., 5, <sup>2</sup>Российский новый университет, кафедра "Информационные технологии фондового рынка", Российская Федерация, 105005 Москва, ул. Радио, 22 Поступила в редакцию 27.12.2011 г.

В рамках метода кумулянтного описания вероятностных распределений А.Н. Малахова получено ковариационное приближение многомерных плотностей и интегралов вероятностей в виде степенного ряда по элементам ковариационной матрицы случайных величин и производным их одномерных интегральных функций распределения. Исследованы необходимые и достаточные условия, при которых характеристическая функция ковариационного приближения положительно определена. Показано, что эти условия рационально формулировать в терминах поиска области допустимых значений для параметров сужения одномерных плотностей распределения вероятностей.

#### введение

При решении многих задач статистической радиофизики и радиотехники, теории управления и систем передачи информации возникает необходимость в представлении многомерных плотностей вероятностей (ПВ) случайных величин (СВ) в виде, удобном для отыскания аналитических выражений интегральных функций распределения (ФР). Решающие указанную проблему известные способы аппроксимации вероятностных законов, как правило, охватывают одномерный и двумерный случаи [1, 2] или многомерное нормальное распределение. Так, в [3] приведено выражение интегральной функции нормального закона в виде степенного ряда по ковариациям.

Известны также общие методы асимптотических аппроксимаций многомерных распределений. В [4] предложены алгоритмы, обобщающие разложение Эджворта в теории возмущений на многомерный случай. Применение указанных методов в целях аналитического описания интегральных ФР не всегда оправдано, так как приводит к неприемлемо большим вычислительным затратам. В работе [5] получено v-связное приближение *N*-мерной интегральной функции распределения CB (N > v + 1). Однако его практическое применение требует знания v и (v + 1)-мерных интегральных ФР, нахождение которых в конечном виде при значениях v ≥ 2 для подавляющего большинства вероятностных законов оказывается сложным. В данной работе представлен удобный метод аналитического описания многомерных плотностей вероятностей СВ и их интегральных ФР.

#### 1. КУМУЛЯНТНОЕ ОПИСАНИЕ РАСПРЕДЕЛЕНИЯ

Полной и удобной формой задания вероятностного распределения системы CB  $X_1, ..., X_N$ является бесконечный набор их совместных кумулянтов  $\vartheta_{n_1...n_N}^{X_1...X_N}$  порядков  $n_1 + ... + n_N = 1, 2, ... [6]$ . Кумулянтному описанию распределения соответствует *N*-мерная характеристическая функция (X $\Phi$ ) вида

$$\theta_N\left(\vec{u}\right) = \exp\left(\sum_{n_1} \cdots \sum_{n_N} \frac{\vartheta_{n_1 \dots n_N}^{X_1 \dots X_N}}{n_1! \dots n_N!} (ju_1)^{n_1} \cdots (ju_N)^{n_N}\right),$$
  
$$\vec{u} = (u_1, \dots, u_N).$$
(1)

На практике основной, а иногда и единственной информацией о системе CB X<sub>1</sub>, ..., X<sub>N</sub>, которую удается надежно оценить, являются их одномерные плотности вероятности  $\phi_{1,1}^{X_1}(x_1), ..., \phi_N^{X_N}(x_N)$  и ковариационная матрица  $\{\vartheta_{1,1}^{X_n, X_m}\}_{n=1, (N-1)}^{m=(n+1), N}$ , которая характеризует статистические связи первого порядка. Вместе с тем известен широкий класс вероятностных распределений, высшие кумулянты которых достаточно малы. Таким образом, одним из возможных способов приближенной аппроксимации многомерных вероятностных законов является пренебрежение взаимными статистическими связями второго и последующих порядков, т.е. замена истинного распределения модельным второго порядка, у которого совместные кумулянты третьего и последующих порядков равны нулю [6]. Модельное приближение ХФ в этом

случае найдем из выражения (1). В результате получим

$$\theta_{N}^{(2)}(\vec{u}) = \prod_{\nu=1}^{N} \theta_{1}^{X_{\nu}}(u_{\nu}) \exp(-U);$$

$$U = \sum_{n=1}^{N-1} \sum_{m=n+1}^{N} b_{n,m} u_{n} u_{m},$$
(2)

где  $\theta_1^{X_v}(u_v)$  — одномерная характеристическая функция СВ  $X_v$ ;  $b_{n,m} = \vartheta_{1,1}^{X_n,X_m}$  — ковариация случайных величин  $X_n$  и  $X_m$ .

Разлагая экспоненту в ряд по степеням U и почленно интегрируя по формуле обращения (это возможно, так как в силу свойств одномерных ХФ  $\theta_1^{X_v}(u_v)$  члены ряда непрерывны, а сам ряд по признаку Абеля сходится равномерно), получим модельное приближение ПВ второго порядка (в смысле А.Н. Малахова [6]) для системы случайных величин

$$\varphi_N^{(2)}(\vec{x}) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} Q_{N,k}(\vec{x}), \quad \vec{x} = (x_1, \dots, x_N)^T; \quad (3)$$

$$Q_{N,k}\left(\vec{x}\right) = \frac{1}{\left(2\pi\right)^{N}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \prod_{n=1}^{N} \theta_{1}^{X_{n}}\left(u_{n}\right) \times \exp\left(-ju_{n}x_{n}\right) U^{k} du_{1} \dots du_{N}.$$
(4)

В частности, при k = 0 из (4) по формуле обращения находим приближение многомерной ПВ, не учитывающее статистических связей системы случайных величин

$$Q_{N,0}(\vec{x}) = \prod_{n=1}^{N} \varphi_1^{X_n}(x_n).$$
 (5)

Члены ряда (3) связаны между собой рекуррентным дифференциальным соотношением. Из (4) и (2) получим

$$Q_{N,k+1}(\vec{x}) = \frac{1}{(2\pi)^{N}} \sum_{n=1}^{N-1} \sum_{m=n+1}^{N} b_{n,m} \times \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} u_{n} u_{m} \prod_{\nu=1}^{N} \theta_{1}^{X_{\nu}}(u_{\nu}) \exp(-ju_{\nu}x_{\nu}) U^{k} du_{1} \dots du_{N}.$$
(6)

Нетрудно показать, что достаточными условиями возможности дифференцирования по переменным  $x_n$ , n = 1, ..., N, под знаком интеграла в (4) является сходимость интегралов

$$\int_{0}^{\infty} u_n^{k+1} \left| \Theta_1^{X_n}(u_n) \right| du_n < \infty.$$
(7)

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 57 № 6 2012

Действительно, из приведенного условия и четности функций  $|\theta_1^{X_n}(u_n)|$  следует сходимость следующих интегралов при s = 0, ..., k + 1:

$$\int_{0}^{+\infty} \left| u_{n}^{s} \Theta_{1}^{X_{n}}(u_{n}) \right| du_{n} < 2 \int_{0}^{1} u_{n}^{s} \left| \Theta_{1}^{X_{n}}(u_{n}) \right| du_{n} + 2 \int_{0}^{+\infty} u_{n}^{k+1} \left| \Theta_{1}^{X_{n}}(u_{n}) \right| du_{n},$$

которые мажорируют интегралы

$$\frac{d^{s}}{dx_{n}^{s}}\left\{\varphi_{1}^{X_{n}}(x_{n})\right\} = \int_{-\infty}^{+\infty} (-ju_{n})^{s} \,\theta_{1}^{X_{n}}(u_{n}) \exp(-ju_{n}x_{n}) \,du_{n},$$
(8)  
(s = 0,...,k + 1).

С учетом непрерывности подынтегрального выражения в (8) это влечет за собой равномерную сходимость правой части последнего равенства всюду относительно  $x_n$  и, как следствие, равномерную сходимость интегралов в (4) и (6) всюду относительно  $x_1,...,x_N$ .

Кроме того, из равномерной сходимости (8) следует непрерывность одномерных ПВ  $\varphi_1^{X_n}(x_n)$  и их производных порядка не выше (*K* + 1) во всей области существования. Другими словами, предполагая в дальнейшем выполненными условия (7), будем рассматривать одномерные ПВ как непрерывные. Кроме того, предполагают, что производные порядка не выше *K* также непрерывные и имеют *K*-й порядок соприкосновения с осью абсцисс на концах области существования. В случае конечного *K* ряд (3) будем усекать и рассматривать сумму первых (*K* + 1) членов.

Дифференцируя (4) по переменным  $x_n$  и  $x_m$ , убеждаемся, что результат с точностью до множителя  $(-b_{n,m})$  совпадает с общим членом суммы (6), т.е.

$$Q_{N,k+1}(\vec{x}) = -\sum_{n=1}^{N-1} \sum_{m=n+1}^{N} b_{n,m} \frac{\partial}{\partial x_n \partial x_m} \{Q_{N,k}(\vec{x})\},$$

откуда по индукции находим выражение для общего члена ряда (3)

$$Q_{N,k+1}(\vec{x}) = (-1)^{k} \sum_{n_{1}=1}^{N-1} \sum_{m_{1}=n_{1}+1}^{N} \cdots \sum_{n_{1}=1}^{N-1} \sum_{m_{1}=n_{1}+1}^{N} \prod_{\nu=1}^{k} b_{n_{\nu},m_{\nu}} \times \frac{\partial^{2k} Q_{N,0}(\vec{x})}{\partial x_{n_{1}} \partial x_{m_{1}} \cdots \partial x_{n_{k}} \partial x_{m_{k}}}.$$
(9)

Подставляя формулу (9) в выражение (3) и записывая результат в форме степенного ряда по элементам ковариационной матрицы, с учетом начальной аппроксимации (5) окончательно получим ковариационное приближение многомер- а также дополнительным свойствам: ной ПВ

$$\varphi_{N}^{(2)}(\vec{x}) = \sum_{k_{1,2}} \cdots \sum_{k_{(N-1),N}} \frac{b_{1,2}^{k_{1,2}} \dots b_{(N-1),N}^{k_{(N-1),N}}}{k_{1,2}! \dots k_{(N-1),N}!} \times \prod_{m=1}^{N} \frac{d^{k_{m}+1}}{dx_{m}^{k_{m}+1}} \{ \Phi_{1}^{X_{m}}(x_{m}) \}.$$
(10)

Здесь  $\Phi_1^{X_m}(x_m)$  — одномерная интегральная  $\Phi P$  случайной величины  $X_m$ , а индексы суммирования - суть элементы верхней треугольной матрицы  $\{k_{n,m}\}_{n=l,(N-l)}^{m=(n+1),N}$ , принимающие целые неотрицательные значения из области

$$0 \leq \sum_{n=1}^{N-1} \sum_{m=n+1}^{N} k_{n,m} \leq K; \quad k_m = \sum_{n=1}^{m-1} k_{n,m} + \sum_{n=m+1}^{N} k_{m,n}.$$

Выражение (10) аппроксимирует многомерную ПВ случайных величин взвешенной суммой произведений одномерных плотностей и их производных с весовыми коэффициентами в виде степеней недиагональных элементов ковариационной матрицы.

## 2. КОВАРИАЦИОННОЕ ПРИБЛИЖЕНИЕ ИНТЕГРАЛЬНОГО РАСПРЕДЕЛЕНИЯ

При интегрировании ряда (10) по *N*-мерному параллелепипеду с ребрами, параллельными осям координат, переменные разделяются, что позволяет формально получить модельное приближение интегральной функции распределения второго порядка

$$\Phi_{N}^{(2)}(\vec{x}) = \sum_{k_{1,2}} \cdots \sum_{k_{(N-1),N}} \frac{b_{1,2}^{k_{1,2}} \dots b_{(N-1),N}^{k_{(N-1),N}}}{k_{1,2}! \dots k_{(N-1),N}!} \times \prod_{m=1}^{N} \frac{d^{k_m}}{dx_m^{k_m}} \{\Phi_1^{X_m}(x_m)\}.$$
(11)

Непосредственной проверкой легко убедиться, что модельные распределения (10) и (11) удовлетворяют следующим основным свойствам вероятностных законов:

1. 
$$\Phi_N^{(2)}(x_1,...,x_{n-1},\infty,x_{n+1},...,x_N) = \Phi_{N-1}^{(2)}(x_1,...,x_{n-1},x_{n+1},...,x_N);$$
  
2.  $\Phi_N^{(2)}(\infty,...,\infty) = 1;$   
3.  $\lim_{x_n \to -\infty} \Phi_N^{(2)}(\vec{x}) = 0$ ,  $(n = 1, ..., N);$   
4.  $\varphi_N^{(2)}(\vec{x})$  и  $\Phi_N^{(2)}(\vec{x})$  – всюду непрерывны по  $x_1,...,x_N$ ,

5. 
$$\int_{b_{n,m}\to0}^{+\infty} x_n x_m \varphi_N^{(2)}(\vec{x}) dx_1 \dots dx_N = b_{n,m} + \langle X_n \rangle \langle X_m \rangle; \{n = 0, \dots, n, n\};$$
  
6. 
$$\lim_{b_{n,m}\to0} \varphi_N^{(2)}(\vec{x}) = \varphi_1^{X_n}(x_n) \varphi_{N-1}^{(2)}(x_1, \dots, x_{n-1}, x_{n+1}, \dots, x_N);$$
  
(*m* = 1, ..., *N*; *n* ≠ *m*).

В последнем равенстве n - фиксировано. Вместе с тем усечение бесконечного ряда совместных кумулянтов системы случайных величин X<sub>1</sub>, ...,  $X_N$ , а также усечение ряда (3) конечным числом членов разложения К может привести к отрицательным значениям модельного приближения ПВ, в особенности на ее "хвостах". Кроме того, ряд (10) может вести себя нерегулярно в том смысле, что сумма К его членов может давать худшее приближение к истинной ПВ, чем сумма (K - 1) членов.

Выясним, каким ограничениям должны удовлетворять корреляционные связи и одномерные кумулянты случайных величин X<sub>1</sub>, ..., X<sub>N</sub>, чтобы функция (2) была положительно определенной, т.е. действительно являлась характеристической. Для этого модельное приближение (2) представим в виде

$$\theta_N^{(2)}(\vec{u}) = \theta_N^{(G)}(\vec{u}|\vec{h}) \prod_{n=1}^N \theta_1^{X_n^{(C)}}(u_n|h_n), \quad \vec{h} = (h_1, \dots, h_N) (12)$$

Квадратичная форма

$$\theta_{N}^{(G)}\left(\vec{u}\,\middle|\,\vec{h}\,\right) = \exp\!\left(-\frac{1}{2}\sum_{n=1}^{N}h_{n}b_{n,n}u_{n}^{2} - U\right)$$
(13)

по своей структуре совпадает с ХФ *N*-мерного гауссовского распределения с нулевым вектором математического ожидания (МО) и ковариационной матрицей

$$\mathbf{B}(\vec{h}) = \begin{pmatrix} h_1 b_{1,1} & b_{1,2} & \cdots & b_{1,N} \\ b_{1,2} & h_2 b_{2,2} & \cdots & b_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1,N} & b_{2,N} & \cdots & h_N b_{N,N} \end{pmatrix}.$$
 (14)

Функция

$$\theta_{1}^{X_{n}^{(c)}}(u_{n}|h_{n}) = \theta_{1}^{X_{n}}(u_{n})\exp\left(\frac{1}{2}h_{n}b_{n,n}u_{n}^{2}\right)$$
(15)

получена из ХФ случайной величины Х<sub>n</sub> путем уменьшения ее дисперсии

$$b_{n,n} = \int_{-\infty}^{+\infty} x_n^2 \varphi_1^{X_n}(x_n) dx_n - \left(\int_{-\infty}^{+\infty} x_n \varphi_1^{X_n}(x_n) dx_n\right)^2$$

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 57 Nº 6 2012 на величину  $h_n b_{n,n}$ ,  $(0 \le h_n \le 1)$ . Из равенства (15) непосредственно следует

$$\theta_1^{X_n}(u_n) = \theta_1^{X_n^{(C)}}(u_n|h_n) \exp\left(-\frac{1}{2}h_n b_{n,n} u_n^2\right)$$

откуда в соответствии со свойствами преобразования Фурье нетрудно получить интегральное уравнение Фредгольма первого рода типа свертки

$$\frac{1}{\sqrt{2\pi h_n b_{n,n}}} \int_{-\infty}^{+\infty} \varphi_1^{X_n^{(C)}} (z_n | h_n) \exp\left\{-\frac{(z_n - x_n)^2}{2h_n b_{n,n}}\right\} dz_n = (16)$$
$$= \varphi_1^{X_n} (x_n)$$

относительно распределения  $\varphi_1^{X_n^{(C)}}(x_n|h_n)$  с фурьеобразом  $\theta_1^{X_n^{(C)}}(u_n|h_n)$ . Иными словами, параметры  $h_1, ..., h_N$  удобно интерпретировать как параметры сужения истинных одномерных ПВ  $\varphi_1^{X_1}(x_1)$ , ...,  $\varphi_1^{X_N}(x_N)$  [7]. Таким образом, задача анализа положительной определенности модельного приближения (2) сводится к поиску значений вектора параметров сужения  $\vec{h} = (h_1, ..., h_N)$ , при которых функции (13) и (15) положительно определены.

Известно, что симметричная матрица  $\mathbf{B}(h) = \mathbf{U}(\vec{h}) \mathbf{\Lambda}(\vec{h}) \mathbf{U}^{T}(\vec{h})$  является положительно определенной, если все диагональные элементы  $\lambda_{n}(\vec{h}), n = 1, ..., N$ , матрицы собственных значений  $\mathbf{\Lambda}(\vec{h})$  положительны [8]. Здесь  $\mathbf{U}(\vec{h})$  — матрица собственных векторов. В этом случае матрица  $\mathbf{B}(\vec{h})$  является ковариационной, а функция (13) представляет собой ХФ системы случайных гауссовских величин  $X_{1}^{(G)}, ..., X_{N}^{(G)}$  [9].

Вместе с тем, если  $h_n = 0$ , то функция (15) тождественно совпадает с истинной ХФ  $\theta_1^{X_n}(u_n)$ . Геометрически это означает, что в бесконечномерном пространстве кумулянтных коэффициентов точка, отображающая вероятностное распределение  $\varphi_1^{X_n}(x_n)$ , находится внутри подпространства, так называемого *P*-множества [6, с. 47], точкам которого отвечает положительная определенность ХФ. По мере увеличения параметра сужения  $h_n$  дисперсия  $(1 - h_n)b_{n,n}$  некоторой случайной величины  $X_n^{(C)}$  будет уменьшаться, а кумулянтные коэффициенты

$$\gamma_{n,s}(h_n) = \vartheta_s^{X_n} / \{(1-h_n)b_{n,n}\}^{s/2}, \quad s=3, 4, \dots$$

расти. Точка, отображающая функцию  $\theta_1^{X_n^{(C)}}(u_n|h_n)$ , будет удаляться от начала координат бесконечномерного пространства кумулянтных коэффициентов и приближаться к границе *P*-множества.

3 РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 57 № 6 2012

С практической точки зрения поиск области допустимых значений параметров сужения одномерных плотностей  $\varphi_1^{X_1}(x_1), ..., \varphi_1^{X_N}(x_N)$ , при которых функции (13) и (15) положительно определены, рационально выполнять на сетке *N*-мерного пространства  $(h_1,...,h_N) \in \Re^N$  с помощью численного анализа собственных значений  $\lambda_n(\vec{h})$ , n = 1, ..., N, матрицы  $\mathbf{B}(\vec{h})$  и решения интегральных уравнений (16) методами регуляризации А.Н. Тихонова [10, с. 267].

# 3. СМЕСЬ ОДНОМЕРНЫХ РАСПРЕДЕЛЕНИЙ С МНОГОМЕРНЫМ ГАУССОВСКИМ ЯДРОМ

В соответствии со свойствами преобразования Фурье ковариационному приближению (12) истинной ХФ  $\theta_N(\vec{u})$  отвечает модель *P*-смеси [11, с. 187]

$$\varphi_{N}^{(2)}(\vec{x}) = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \varphi_{N}^{(G)} \{\vec{z} - \vec{x} | \vec{h} \} \prod_{n=1}^{N} \varphi_{1}^{X_{n}^{(C)}}(z_{n} | h_{n}) d\vec{z},$$
$$\vec{z} = (z_{1}, \dots, z_{N})^{T}$$

одномерных распределений  $\varphi_1^{X_n^{(C)}}(x_n|h_n), n = 1, ..., N, с многомерным гауссовским ядром$ 

$$\varphi_N^{(G)}\left\{\vec{x} \middle| \vec{h} \right\} = \exp\left\{-\vec{x}^T \mathbf{B}^{-1}\left(\vec{h}\right) \vec{x} / 2\right\} / \sqrt{(2\pi)^N \det\left[\mathbf{B}\left(\vec{h}\right)\right]}.$$

С этой точки зрения, исходную систему СВ пытаются аппроксимировать суммой двух структурных составляющих  $\vec{X} = \vec{X}^{(G)} + \vec{X}^{(C)}$ . Здесь  $\vec{X}^{(G)} = (X_1^{(G)}, ..., X_N^{(G)})^T$  – гауссовская совокупность с нулевым вектором МО и ковариационной матрицей  $\mathbf{B}(\vec{h})$ ;  $\vec{X}^{(C)} = (X_1^{(C)}, ..., X_N^{(C)})^T$  – случайный вектор со статистически независимыми компонентами, каждая из которых может иметь негауссовскую ПВ  $\varphi_1^{X_n^{(C)}}(x_n|h_n)$ , n = 1, ..., N. Такое представление удобно, например, для цифрового моделирования случайного вектора с заданными негауссовыми одномерными законами распределения и ковариационными связями его компонентов.

В конечном итоге решение задачи аппроксимации случайного вектора  $\vec{X}$  суммой гауссовской  $\vec{X}^{(G)}$  и негауссовской  $\vec{X}^{(C)}$  составляющих рационально свести к двум вычислительным этапам. На первом этапе анализируют собственные значения  $\lambda_n(\vec{h})$ , n = 1,..., N, матрицы  $\mathbf{B}(\vec{h})$  на сетке *N*-мерного единичного куба в пространстве параметров сужения  $0 \le h_1,...,h_N \le 1$ . Результатом этого численного анализа является дискриминантная гиперповерхность

$$\det\left[\mathbf{B}(\vec{h})\right] = \prod_{n=1}^{N} \lambda_n(\vec{h}) = 0$$

(назовем ее  $\lambda$ -границей), точкам которой отвечает положительная полуопределенность матрицы  $\mathbf{B}(\vec{h})$ . Иными словами,  $\lambda$ -граница указывает минимально возможные значения параметров сужения  $\vec{h}_{\text{мин}} = (h_1^{(\text{мин})}, ..., h_N^{\text{мин}})$ , при которых все собственные значения матрицы  $\mathbf{B}(\vec{h})$  неотрицательны  $\lambda_n(\vec{h}_{\text{мин}}) \ge 0, n = 1, ..., N$ , и хотя бы одно из них в диапазоне нуля.

Практический интерес представляет область значений параметров сужения (назовем ее Н-множеством), обеспечивающих положительную определенность матрицы  $\mathbf{B}(h)$ . Ясно, что эта область содержит вершину куба  $h_1 = ... = h_N = 1$  и в окрестности ее  $\lambda$ -границы матрица **B**(h) имеет неполный ранг, в лучшем случае (N-1). Вычислительные затраты первого этапа в некоторых случаях можно существенно сократить, если анализировать часть Н-множества в виде усеченного гиперкуба  $h_{\text{мин}} \le h_n \le 1, n = 1, ..., N$ . Здесь наименьшее значение параметров сужения  $h_1^{(\text{мин})} = ... = h_N^{(\text{мин})} =$  $= h_{\text{мин}}$  выбирают из условия  $\varepsilon \ge \min\{\lambda_1(h_{\text{мин}}), ..., \}$  $\lambda_N(h_{\text{мин}}) > 0$ , где  $\varepsilon$  – заданный пользователем уровень значимости наименьшего собственного значения матрицы  $\mathbf{B}(h_{\text{мин}})$ .

На втором этапе решают интегральные уравнения (16) для выбранных значений параметров сужения  $h_1, ..., h_N$  из *H*-множества. Очевидно, что по мере удаления этого множества от  $\lambda$ -границы и приближения к вершине куба  $h_1 = ... = h_N = 1$ обусловленность ковариационной матрицы **B** $(\vec{h})$ улучшается. Однако увеличение параметра сужения  $h_n$  приводит к уменьшению дисперсии  $(1-h_n)b_{n,n}$  случайной величины  $X_n^{(C)}$ , что, в свою очередь, может приводить к появлению отрицательных выбросов на "хвостах" решения  $\varphi_1^{X_n^{(C)}}(x_n|h_n)$  уравнения (16). В такой ситуации рациональным является применение принципа реализуемости, который состоит в следующем.

В качестве тестовых параметров сужения исходных одномерных ПВ выбирают значения из центральной области *H*-множества, например  $h_n = (h_{\text{мин}} + 1)/2, n = 1, ..., N$ . Простой и, как правило, эффективный в вычислительном отношении алгоритм решения уравнения (16) основан на методе обращения свертки [12, с. 134]. Метод состоит в замене интеграла (16) его квадратурным приближением

$$\sum_{m=0}^{M_n} \varphi_1^{X_n^{(C)}}(x_{nm}|h_n) g\{(k-m)\Delta x_n|h_n\} = \varphi_1^{X_n}(x_{nk});$$
$$g\{k\Delta x_n|h_n\} = \frac{1}{\sqrt{2\pi h_n b_{n,n}}} \exp\left\{-\frac{(k\Delta x_n)^2}{2h_n b_{n,n}}\right\},$$
$$k = 0, \dots, M_n.$$

Здесь  $M_n$  и  $\Delta x_n = \left\{ x_n^{\text{макс}} - x_n^{\text{мин}} \right\} / M_n$  – количество интервалов дискретизации и их величина для плотности вероятности  $\varphi_1^{X_n}(x_n)$ , заданной набором значений  $\varphi_{nk} = \varphi_1^{X_n}(x_{nk})$  в диапазоне  $x_n^{(\text{мин})} \le x_n \le x_n^{(\text{макс})}$  для дискретных отсчетов  $x_{nk} = x_n^{(\text{мин})} + k\Delta x_n$ . Полученную систему линейных уравнений относительно неизвестных значений  $\varphi_{nk}^{(C)} = \varphi_1^{X_n^{(C)}}(x_{nk} | h_n)$ ,  $k = 0, ..., M_n$ , модифицированного распределения  $\varphi_1^{X_n^{(C)}}(x_n | h_n)$  удобно представить в матричной форме

$$\mathbf{G}_{n}\vec{\mathbf{\phi}}_{n}^{(C)} = \vec{\mathbf{\phi}}_{n}, \quad \vec{\mathbf{\phi}}_{n}^{(C)} = \left(\mathbf{\phi}_{n1}^{(C)}, \dots, \mathbf{\phi}_{nM_{n}}^{(C)}\right)^{T}$$
$$\vec{\mathbf{\phi}}_{n} = \left(\mathbf{\phi}_{n1}, \dots, \mathbf{\phi}_{nM_{n}}\right)^{T},$$

где  $\mathbf{G}_n = \{g_{k,m}^{(n)}\}, (k, m = 0, 1, ..., M_n), -$  симметричная матрица Грина размером  $(M_n + 1) \times (M_n + 1)$ . В соответствии с теоремой Мичелли гауссовские веса  $g_{k,m}^{(n)} = g\{(k-m)\Delta x_n | h_n\}$  обеспечивают несингулярность матрицы **G**, т.е. ее обратимость. (В дальнейшем для сокращения записи, там где это не вызвано необходимостью, индекс *n* одномерного распределения будем опускать.)

Регуляризованная система линейных уравнений имеет вид

$$\mathbf{F}\vec{\mathbf{\phi}}^{(C)} = \vec{\mathbf{\phi}}, \quad \mathbf{F} = \mathbf{G} + \eta \mathbf{I}_{M+1},$$

где  $I_{M+1}$  — единичная матрица, размер которой  $(M+1) \times (M+1); \eta \ge 0$  — параметр регуляризации, значение которого выбирают методом скользящей проверки. Численное решение полученной системы уравнений находят, например, с помощью итерационного алгоритма Гаусса–Зейделя [12, с. 138]

$$\vec{\phi}^{(C)}[i] = \vec{\phi}^{(C)}[i-1] + \mu \vec{E}[i-1],$$
$$\vec{E}[i-1] = \vec{\phi} - \mathbf{F} \vec{\phi}^{(C)}[i-1], \quad i = 1, 2, ...$$

и ограничений типа неравенств

$$\varphi_1^{(C)} \ge 0, \dots, \varphi_M^{(C)} \ge 0,$$

где *i* — номер итерации;  $1 \le \mu \le 2$  — параметр скорости сходимости алгоритма. Вычисления продолжают, если выполняются критерии наибольшего числа итераций *i*  $\le I_{\text{макс}}$  и заметного изменения среднего квадрата ошибок

$$|e[i+1]-e[i]| > \varepsilon e[i], \quad e[i] = ||\vec{E}[i]||^2,$$

где  $\varepsilon > 0$  — заданный пользователем уровень значимости.

В соответствии с принципом реализуемости в качестве начального приближения  $\vec{\phi}^{(C)}[0]$  модифицированного распределения естественно выбрать результат масштабирования исходной ПВ  $\vec{\phi}$ , т.е.

$$\varphi_{1}^{X_{n}^{(c)}}(y_{nk}|h_{n}) = \begin{cases} \frac{\varphi_{1}^{X_{n}}(x_{nk})}{\beta_{n}}, & y_{n}^{(\text{MUH})} \leq y_{nk} \leq y_{n}^{(\text{Makc})} \\ 0, & x_{n}^{(\text{MUH})} \leq y_{nk} < y_{n}^{(\text{MUH})} \cup y_{n}^{(\text{Makc})} < y_{nk} \leq x_{n}^{(\text{Makc})}. \end{cases}$$
(17)

Здесь  $y_{nk} = \alpha_n + \beta_n (x_{nk} - \alpha_n), k = 0, ..., M_n - сетка дискретизации модифицированной ПВ, заданной в диапазоне <math>y_n^{(Muh)} \le y_n \le y_n^{(Makc)}$ , где

$$y_n^{(\text{MUH})} = \alpha_n + \beta_n \left( x_n^{(\text{MUH})} - \alpha_n \right);$$
  
$$y_n^{(\text{MAKC})} = \alpha_n + \beta_n \left( x_n^{(\text{MAKC})} - \alpha_n \right)$$

Опыт цифрового моделирования показал, что характеристики положения  $\alpha_n$  и масштаба  $\beta_n$  в преобразовании (17) целесообразно согласовывать с соответствующими робастными статистиками исходной ПВ. Например, в случае унимодального распределения  $\varphi_1^{X_n}(x_n)$  рациональным является выбор

$$\alpha_n = \max_x \{ \varphi_1^{X_n}(x_n) \} + a_n(h_n); \quad \beta_n = \sqrt{1 - h_n} + d_n(h_n).$$

Параметры подгонки  $a_n(h_n)$  и  $d_n(h_n)$  оптимизируют по критерию минимума среднего квадрата ошибок

$$(a,d)_{\text{ontr}} = \operatorname{Arg\,min}_{a,d} \left\| \vec{\varphi} - F \vec{\varphi}^{(C)} [0] \right\|^2.$$

#### 4. КОВАРИАЦИОННАЯ АППРОКСИМАЦИЯ МНОГОМЕРНОГО РАСПРЕДЕЛЕНИЯ

Рассмотрим задачу аппроксимации случайного многомерного вектора  $\vec{X} = (x_1, ..., x_N)^T$  суммой гауссовской  $\vec{X}^{(G)}$  и негауссовской  $\vec{X}^{(C)}$  компонент. В качестве исходных данных исследовался набор финансовых мультипликаторов  $x_1 = \ln (P/E), x_2 =$  $= \ln (P/S), x_3 = \ln (Ev/E \text{ bitda}), x_4 = \ln (\text{Roe}), при$ меняемых для фундаментального анализа инве-

Таблица 1. ЭВО ковариационной матрицы данных

| $\{b_{n,m}\}$ | $x_1$     | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $x_4$     |
|---------------|-----------|-----------------------|-----------------------|-----------|
| $x_1$         | 0.033860  | 0.013729              | 0.022987              | -0.015907 |
| $x_2$         | 0.013729  | 0.038261              | 0.003869              | 0.005755  |
| $x_3$         | 0.022987  | 0.003869              | 0.030602              | -0.014186 |
| $x_4$         | -0.015907 | 0.005755              | -0.014186             | 0.037440  |

**Таблица 2.** Собственные значения  $\lambda_n$ , (n = 1, ..., 4) ковариационных матриц для различных параметров сужения *h* 

| h   | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda_4$ |
|-----|-------------|-------------|-------------|-------------|
| 1.0 | 0.071314    | 0.043984    | 0.017806    | 0.007060    |
| 0.9 | 0.067917    | 0.040194    | 0.014308    | 0.003728    |
| 0.8 | 0.064523    | 0.036405    | 0.010815    | 0.000400    |

стиционного качества акций. Выборка  $\bar{X}_1, ..., \bar{X}_K$ (K = 108) такого рода показателей и их смысл представлены на сайте [13]. Данные логарифмировались и очищались от выбросов на этапе предварительной обработки. Границы кластера типичных значений четырех (N = 4) мультипликаторов формировались по правилу "трехсигмовой" области [14, с. 82]

$$\sigma_{\xi} = \frac{1}{\sqrt{KN}} \sqrt{\frac{\left(2 + 4\xi + 3\xi^2\right)\left(1 + \xi\right)^{N/2}}{\left(1 + 2\xi\right)^{N/2 + 2}} - 2},$$

ограниченной поверхностью гиперэллипсоида

$$D_{\xi} = \frac{1}{KN} \sum_{k=1}^{K} \left( \vec{X}_{k} - \vec{E}_{\xi} \right)^{T} \mathbf{B}_{\xi}^{-1} \left( \vec{X}_{k} - \vec{E}_{\xi} \right).$$

Здесь  $\vec{E}_{\xi}$  и  $\mathbf{B}_{\xi}$  – экспоненциально взвешенные оценки (ЭВО) Мешалкина для вектора математического ожидания и ковариационной матрицы данных;  $\xi = 1/2$  – параметр эффективности статистик, устойчивых к засорениям. В табл. 1 представлены ЭВО элементов  $\{b_{n,m}\}_{n=1,N}^{m=1,N}$  ковариационной матрицы мультипликаторов, полученной в результате итерационного решения системы нелинейных уравнений [14, с. 75].

На первом этапе анализировались собственные значения  $\lambda_n(h)$ , (n = 1, ..., 4) ковариационной матрицы (14)  $\mathbf{B}_{\xi}(h)$  в зависимости от параметров сужения  $h_1 = ... = h_4 = h$  одномерных распределений мультипликаторов. Результаты расчетов приведены в табл. 2. Окрестность  $\lambda$ -границы области положительной определенности матрицы  $\mathbf{B}_{\xi}(h)$ 



**Рис. 1.** Исходное распределение (*1*) и решения интегрального уравнения: с ограничениями (*2*), без ограничений (*3*).

соответствует наименьшему значению параметра сужения  $h_{\text{мин}} = 0.8$ .

На втором этапе исследовались решения  $\varphi_1^{X_n^{(C)}}(x_n|h)$  интегрального уравнения (16) для параметра сужения h = 0.9 одномерных ПВ  $\varphi_1^{X_n}(x_n)$ . Численные решения получали методом обращения свертки с помощью итерационного алгоритма Гаусса–Зейделя со следующими параметрами регуляризации и скорости сходимости:  $\eta = 1.0$  и  $\mu = 1.5$  соответственно. Критерии продолжения вычислений формулировались для параметров  $I_{\text{макс}} = 5$  и  $\varepsilon = 0.002$ .



**Рис. 2.** Ошибки аппроксимации исходного распределения для начального приближения (*1*) и решений интегрального уравнения: с ограничениями (*2*), без ограничений (*3*).

Метод обращения свертки хорошо согласуется с выборочной оценкой распределения  $\phi_1^{X_n}(x_n)$  в виде гистограммы, сглаженной сдвигом (Average Shifted Histogram - ASH) [15]

$$\begin{split} \varphi_{1}^{X_{n}}(x_{nk}) &= \frac{1}{K\delta_{n}} \sum_{m=1-m_{n}}^{m_{n}-1} w(m) \vartheta_{k+m}; \\ x_{nk} &= x_{n}^{(\text{MHH})} + k\Delta x_{n}; \, k = 0, \, \dots, \, M_{n}; \\ M_{n} &= \left\{ x_{n}^{(\text{MAKC})} - x_{n}^{(\text{MHH})} \right\} / \Delta x_{n}. \end{split}$$

Здесь  $\delta_n = 2IQ_n/\sqrt[3]{K}$  — робастная оценка ширины разрядных интервалов (bins) Фридмана—Дьякониса [15];  $IQ_n$  — интерквартильный диапазон *n*-го мультипликатора;  $\Delta x_n = \delta_n/m_n$  и  $m_n$  — ширина "суженных" интервалов (narrow bins) и их количество;  $\vartheta_k$  — количество наблюдений, попавших в *k*-й "суженный" интервал ( $\vartheta_k = 0$ , если k < 0 или  $k \ge M_n$ ). Окно данных w(m) выбирают из условия

$$\sum_{n=1-m_n}^{m_n-1} w(m) = m_n$$

В этом случае гистограмма интегрируема с единицей. Такой нормировке удовлетворяет обобщенное окно вида

$$w(m) = m_n \operatorname{Ker}(m/m_n) / \sum_{i=1-m_n}^{m_n-1} \operatorname{Ker}(i/m_n)$$

где Ker(u) — положительная четная функция ядра, заданная на стандартном интервале [—1; 1] и интегрируемая с единицей. Популярные модели ядерных функций приведены в [15, с. 140].

Начальные приближения  $\bar{\phi}_n^{(C)}[0]$ , n = 1, ..., 4, для решений интегрального уравнения (16) формировались в виде масштабированных распределений (17) с оптимальными параметрами подгонки характеристик положения  $a_n(h) = 0.035$  и масштаба  $d_n(h) = -0.1$ .

В качестве примера на рис. 1 представлена ASH-оценка исходного распределения (кривая *I*) мультипликатора  $x_1 = \ln(P/E)$ , преобразованного к стандартному диапазону [0, 1], а также решения уравнения (16) с помощью регуляризованного алгоритма Гаусса–Зейделя после третьей итерации с учетом ограничений в виде неравенств (кривая *2*) и без учета ограничений (кривая *3*). Рис. 2 иллюстрирует ошибки  $\vec{E}[i] = (e_1[i], ..., e_{M_1}[i])$  аппроксимации исходной ПВ  $\vec{\varphi}_1$  с помощью начального приближения  $\vec{\varphi}_1^{(C)}[0]$  (кривая *I*) и решений  $\vec{\varphi}_1^{(C)}[3]$ с учетом ограничений (кривая *2*) и без учета ограничений (кривая *3*). Процесс сходимости итера-

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 57 № 6 2012

ционного алгоритма Гаусса—Зейделя по критерию изменения среднего квадрата ошибок e[i], i = 1, ..., 5, представлен на рис. 3. Начальному приближению решения уравнения (16) отвечает средняя квадратичная ошибка e[0] = 0.1518. Три итерации алгоритма обеспечивают снижение ошибки до значений 0.1307 и 0.1091 в случае учета ограничений (кривая *I*) и без учета ограничений (кривая *2*).

# 5. КОВАРИАЦИОННОЕ ПРИБЛИЖЕНИЕ МНОГОМЕРНОГО ИНТЕГРАЛА ВЕРОЯТНОСТЕЙ

Возможность практического применения многомерных модельных распределений существенно зависит от скорости сходимости и регулярного поведения рядов (10) и (11). Ясно, что эти ряды сходятся медленно, если  $|b_{n,m}| \rightarrow \sqrt{b_{n,n}} b_{m,m}$ и нельзя ограничиться малым числом членов разложения [3]. Оценим скорость сходимости ковариационного приближения многомерной ПВ (10). Рассмотрим систему случайных величин с нулевыми МО, единичными дисперсиями и коэффициентами корреляции  $r_{1,2}, ..., r_{(N-1),N}$ . В качестве истинного распределения будем анализировать эллипсоидально симметричное из параметрического семейства

 $\varphi_N(\vec{X}) = f(\vec{X}^T \mathbf{R}^{-1} \vec{X}) / S_1 v_{N-1} \sqrt{\det \mathbf{R}}.$ Здесь  $S_1 = (2\sqrt{\pi^N}) / \Gamma(N/2)$  – площадь поверхности единичной сферы в  $\Re^N$ ;  $f(y^2)$  – одномерное, монотонно убывающее при  $y \to \infty$  распределение с конечным (N-1)-м моментом  $v_{N-1} = \int_{0}^{\infty} \rho^{N-1} f(\rho^2) d\rho;$  $\mathbf{R} = \{r_{n,m}\} - N \times N$ -матрица коэффициентов корреляции. Погрешности ковариационного приближения будем оценивать по критерию абсолютной ошибки, нормированной на значение истинной ПВ в точке МО

$$\Delta(\delta|K) = \pm \max_{F(\vec{X}|\delta)=0} \left| \varphi_N^{(2)}(\vec{X}) - \varphi_N(\vec{X}) \right| / \varphi_N(0,\ldots,0),$$

где значение погрешности берется с положительным знаком, если  $\varphi_N^{(2)}(\vec{X}) \ge \varphi_N(\vec{X})$ , и с отрицательным в противном случае. Результаты численного анализа представляют собой параметрическое семейство функции  $\Delta(\delta|K)$ , рассчитанной по множеству точек на поверхностях гиперэллипсоидов равной плотности

$$F(\vec{X}|\delta) = \vec{X}^T R^{-1} \vec{X} - f^{(-1)}(\delta J_0) = 0;$$
  
$$J_0 = S_1 v_{N-1} \varphi_N(0,...,0) \sqrt{\det \mathbf{R}}.$$

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 57 № 6 2012



**Рис. 3.** Сходимость алгоритма решения интегрального уравнения: с ограничениями (1), без ограничений (2).

Здесь  $f^{(-1)}(\delta J_0) - \phi$ ункция, обратная к радиальному распределению. Уровни истинной плотности рационально задавать в долях  $\delta \phi_N(0,...,0)$  от ее значения в точке математического ожидания. Это обеспечивает инвариантный анализ пространства для различных значений коэффициентов корреляции и одинаковые масштабы по осям  $\delta$  и  $\Delta$ .

Рассмотрим специальную задачу вычисления интеграла по *N*-мерному параллелепипеду  $X_n > x_n$ , n = 1, ..., N, важную в приложении к оценкам характеристик выбросов случайных процессов [5, 16–19]. Интегрирование (10) приводит к оценке многомерного интеграла вероятностей

$$P(X_{1} > x_{1},...,X_{N} > x_{N}) \approx P_{N}^{(2)}(x_{1},...,x_{N}) =$$

$$= \sum_{k_{1,2}} \cdots \sum_{k_{(N-1),N}} \frac{b_{1,2}^{k_{1,2}} \dots b_{(N-1),N}^{k_{(N-1),N}}}{k_{1,2}! \dots k_{(N-1),N}!} \prod_{m=1}^{N} G_{k_{m}}^{X_{m}}(x_{m}), \qquad (18)$$

где

$$G_{k_m}^{X_m}(x_m) = \begin{cases} 1 - \Phi_1^{X_m}(x_m) & , k_m = 0\\ -\frac{d^{k_m - 1}}{dx_m^{k_m - 1}} \{\varphi_1^{X_m}(x_m)\}, & k_m > 0 \end{cases}$$

Если одномерная плотность распределения  $\varphi_1(x)$  удовлетворяет дифференциальному уравнению Пирсона и, таким образом, является весовой функцией соответствующей системы классических ортогональных полиномов  $P_k(x), k = 1, 2, ...,$ 

| x   | K     |       |       |       |       |       | P(x + x)                       |
|-----|-------|-------|-------|-------|-------|-------|--------------------------------|
|     | 0     | 1     | 2     | 3     | 4     | 5     | $I_3(\Lambda,\Lambda,\Lambda)$ |
| 0.2 | 0.074 | 0.139 | 0.143 | 0.143 | 0.144 | 0.144 | 0.144                          |
| 0.4 | 0.041 | 0.088 | 0.095 | 0.094 | 0.096 | 0.095 | 0.095                          |
| 0.6 | 0.021 | 0.051 | 0.06  | 0.059 | 0.06  | 0.06  | 0.06                           |
| 0.8 | 0.01  | 0.027 | 0.036 | 0.035 | 0.036 | 0.036 | 0.035                          |
| 1.0 | 0.004 | 0.013 | 0.019 | 0.02  | 0.02  | 0.02  | 0.02                           |
| 1.2 | 0.002 | 0.006 | 0.01  | 0.01  | 0.011 | 0.011 | 0.011                          |
| 1.4 | 0.001 | 0.002 | 0.004 | 0.005 | 0.005 | 0.005 | 0.005                          |
| 1.6 | 0     | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002                          |

**Таблица 3.** Корреляционное приближение интеграла  $P_3(x, x, x)$ : слабая корреляция ( $r_{1,2} = r_{2,3} = 0.4$ ;  $r_{1,3} = 0.2$ )

**Таблица 4.** Корреляционное приближение интеграла  $P_3(x, x, x)$ : сильная корреляция ( $r_{1,2} = r_{2,3} = 0.8$ ;  $r_{1,3} = 0.6$ )

| x   | K     |       |       |       |       |       | $P(\mathbf{x} \mathbf{x} \mathbf{x})$             |
|-----|-------|-------|-------|-------|-------|-------|---------------------------------------------------|
|     | 0     | 1     | 2     | 3     | 4     | 5     | 1 <sub>3</sub> ( <i>x</i> , <i>x</i> , <i>x</i> ) |
| 0.2 | 0.074 | 0.216 | 0.237 | 0.236 | 0.252 | 0.242 | 0.251                                             |
| 0.4 | 0.041 | 0.144 | 0.182 | 0.169 | 0.197 | 0.184 | 0.188                                             |
| 0.6 | 0.021 | 0.088 | 0.132 | 0.118 | 0.149 | 0.146 | 0.136                                             |
| 0.8 | 0.01  | 0.049 | 0.089 | 0.082 | 0.106 | 0.113 | 0.094                                             |
| 1.0 | 0.004 | 0.024 | 0.055 | 0.056 | 0.069 | 0.079 | 0.063                                             |
| 1.2 | 0.002 | 0.011 | 0.03  | 0.036 | 0.042 | 0.046 | 0.04                                              |
| 1.4 | 0.001 | 0.005 | 0.015 | 0.021 | 0.024 | 0.024 | 0.025                                             |
| 1.6 | 0     | 0.002 | 0.007 | 0.011 | 0.013 | 0.011 | 0.015                                             |
| 1.8 | 0     | 0.001 | 0.003 | 0.005 | 0.007 | 0.006 | 0.008                                             |

то ее производные удобно вычислять с помощью обобщенной формулы Родрига [20]

$$d^{k-1} \left\{ \varphi_{1}(x) q^{k-1}(x) \right\} / dx^{k-1} = c_{k-1} P_{k-1}(x) \varphi_{1}(x),$$
  
$$k = 1, 2, \dots.$$

Здесь  $c_k$  — функциональный ряд, а q(x) — многочлен не выше второй степени [21, стр. 591]. Из приведенной формулы непосредственно следует

$$d \left\{ \phi_1(x) \right\} / dx = \phi_1(x) W_1(x);$$
$$W_1(x) = (c_1 P_1(x) - d \left\{ q(x) \right\} / dx) / q(x)$$

что по индукции дает

$$d^{k-1} \left\{ \varphi_{1}(x) \right\} / dx^{k-1} = \varphi_{1}(x) W_{k-1}(x), \qquad (19)$$
  
$$k = 2, 3, \dots$$

Раскрывая левую часть формулы Родрига по теореме Лейбница и подставляя в полученный результат равенство (19), получим рекуррентное соотношение для вычисления функций  $W_{k-1}(x), k = 2, 3, ...$ 

$$W_0(x) = 1;$$
  

$$W_{k-1}(x) = \frac{1}{q^{k-1}(x)} \times$$
  

$$\lesssim \left( c_{k-1} P_{k-1}(x) - \sum_{j=1}^{k-1} \frac{(k-1)!}{(k-j-1)! j!} W_{k-j-1}(x) \frac{d^j}{dx^j} \{ q^{k-1}(x) \} \right).$$

В случае гауссовского распределения выражение для производных одномерных плотностей значительно упрощается

$$\frac{d^{k-1}}{dx_n^{k-1}} \left\{ \varphi_1^{X_n}(x_n) \right\} = \left( -\frac{1}{\sqrt{b_{n,n}}} \right)^{k-1} H_{k-1}\left( \frac{x_n - a_n}{\sqrt{b_{n,n}}} \right) \varphi_1^{X_n}(x_n),$$
  
$$k = 1, 2, \dots$$

Здесь  $a_n = \langle X_n \rangle$  — МО случайной величины  $X_n$ , а  $H_k(x)$  — полином Чебышева–Эрмита степени k

$$H_0(x) = 1; \quad H_1(x) = x;$$
$$H_{k+1}(x) = xH_k(x) - kH_{k-1}(x), \quad k = 1, 2, \dots.$$

В частном случае, когда

$$x_1 = x_2 = \dots = x_N = 0; \quad \varphi_1^{X_n}(x) = \exp(-x^2/2)/\sqrt{2\pi},$$
  
 $n = 1, \dots, N,$ 

оценка (18) тождественно совпадает с полученной Кендаллом оценкой нормального многомерного интеграла (см. [3]).

Численный анализ сходимости рядов (10) и (18) проводился для трехмерного гауссовского распределения и значений коэффициентов корреляции  $r_{1,2} = r_{2,3} = -0.4...0.8$  и  $r_{1,3} = -0.6...0.6$  с шагом 0.2 для всех возможных комбинаций, при которых обобщенная дисперсия нормальной плотности положительна. В качестве истинных значений нормального тройного интеграла применялись значения  $P_3(x, x, x)$ , табулированные в [5]. Типичные результаты вычислений приведены в табл. 3 и 4 и на рис. 4–9.

Численные эксперименты показали, что усечение ряда (10) конечным числом членов до  $K \le 5$  не приводит к появлению отрицательных значений ковариационного приближения трехмерной ПВ внутри эллипсоида равной плотности по уровню  $\delta = 0.1$ , поскольку графики функции  $\Delta(\delta|K)$  не опускаются ниже биссектрисы четвертого квадранта (см. рис. 4, 6 и 8).

В случае слабой корреляции ( $|r_{n,m}| \le 0.5$ ) ряды (10) и (18) ведут себя регулярно и уже при K = 2 дают приемлемо точные приближения к истинным значениям (рис. 4, 5). Для плотности распределе-

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 57 № 6 2012



**Рис. 4.** Относительная ошибка приближения нормальной ПВ в случае слабой корреляции ( $r_{1,2} = r_{2,3} = 0.4$ ;  $r_{1,3} = 0.2$ ): K = 0 (1); 2 (2); 5 (3).



**Рис. 6.** Относительная ошибка приближения нормальной ПВ в случае сильной корреляции ( $r_{1,2} = r_{2,3} = 0.8$ ;  $r_{1,3} = 0.6$ ) K = 0 (1); 2 (2); 5 (3).

ния  $|\Delta(\delta|K)| \le 0.15$ , а наибольшее относительное отклонение от истинного значения нормального тройного интеграла (см. табл. 3)

$$\varepsilon(x|K) = \max_{x} \left| \frac{P_{3}^{(2)}(x,x,x)}{P_{3}(x,x,x)} - 1 \right| \le 0.2.$$

В случае сильной корреляции ряды (10) и (18) ведут себя нерегулярно (рис. 6, 7). Для  $0.2 \le x \le 0.8$ ряд (18) дает точность приближения к  $P_3(x, x, x)$  не

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 57 № 6 2012



**Рис. 5.** Зависимость интеграла вероятностей P(x, x, x) от порога *x* в случае слабой корреляции ( $r_{1,2} = r_{2,3} = 0.4$ ;  $r_{1,3} = 0.2$ ): K = 0 (1); 2 (2); 5 (3); табулированная оценка (4).



**Рис.** 7. Зависимость интеграла вероятностей P(x, x, x) от порога x в случае сильной корреляции ( $r_{1,2} = r_{2,3} = 0.8$ ;  $r_{1,3} = 0.6$ ): K = 0 (1); 2 (2); 5 (3); табулированная оценка (4).

хуже  $\varepsilon(x|K) \le 0.25$  при K = 2, а для x > 0.8 — при K = 3 (табл. 4). Дальнейшее увеличение числа членов разложения до K = 4, 5 не приводит к существенному увеличению точности ковариационного приближения нормального тройного интеграла в указанном диапазоне изменения аргумента x. Во всех случаях наблюдается смещение ковариационной оценки многомерной ПВ в сторону увеличения ее масштаба.



-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Относительный уровень ПВ

**Рис. 8.** Относительная ошибка приближения нормальной ПВ в случае отрицательной корреляции  $(r_{1,2} = r_{2,3} = 0.2; r_{1,3} = -0.6): K = 0$  (1); 2 (2); 5 (3).



от порога *x* в случае отрицательной корреляции ( $r_{1,2} = r_{2,3} = 0.2$ ;  $r_{1,3} = -0.6$ ): K = 0 (*I*); 2 (*2*); 5 (*3*).

#### ЗАКЛЮЧЕНИЕ

В работе представлена практическая методика кумулянтного описания негауссовых распределений. Ее информационной основой являются выборочные оценки одномерных плотностей вероятностей и ковариационной матрицы исходных данных. Получено ковариационное приближение многомерных плотностей и интегралов вероятностей в виде степенного ряда по элементам ковариационной матрицы случайных величин и производным их одномерных интегральных функций распределения. Такого рода модель естественным образом согласуется с непараметрическими, параметрическими и полупараметрическими оценками многомерных распределений. Кроме того, ковариационное представление позволяет минимизировать вычислительные затраты при решении ряда задач статистической радиотехники, радиофизики и цифрового моделирования сложных систем. В частности, ковариационная аппроксимация выборки данных в виде статистически независимой суммы многомерной гауссовой компоненты и негауссовых одномерных составляющих позволяет эффективно решать трудоемкие задачи вычислительной математики методами статистических испытаний. Следует также отметить, что методология кумулянтного описания предусматривает возможность представления негауссовых распределений по ковариациям высших порядков в смысле Р.Л. Стратоновича.

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Тихонов В.И.* Статистическая радиотехника. 2-е изд. М.: Радио и связь, 1982.
- 2. Beckmann P. // IEEE Trans. 1973. V. AP-21. № 2. P. 169.
- Мартынов Г.В. // Итоги науки и техники. Сер. Теория вероятностей. Математическая статистика. Теоретическая кибернетика / Под ред. Гамкрелидзе Р.В. М.: ВИНИТИ. 1979. Т. 17. С. 23.
- 4. Chambers M. // Biometrika. 1967. V. 54. № 3–4. P. 367.
- 5. *Фомин Я.А.* Теория выбросов случайных процессов. М.: Связь, 1980.
- Малахов А.Н. Кумулянтный анализ случайных негауссовых процессов и их преобразований. М.: Сов. радио, 1978.
- 7. *Devroye L., Gyorfii L.* Nonparametric Density Estimation: The L1 View. N. Y.: John Wiley & Sons, 1985.
- 8. *Фукунага К.* Введение в статистическую теорию распознавания образов М: Наука, 1979.
- Cramer H. Mathematical Methods of Statistics. Princeton: Univ. Press, 1946.
- 10. Верлань А.Ф., Сизиков В.С. Интегральные уравнения: методы, алгоритмы, программы. Справочное пособие. Киев: Наук. думка, 1986.
- Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Классификация и снижение размерности: Справ. изд. / М.: Финансы и статистика, 1989.
- Минами С., Утида Т., Кавата С. и др. Обработка экспериментальных данных с использованием компьютера / Пер. с яп. М.: Радио и связь, 1999.
- 13. http://www.2stocks.ru/main/invest/stocks/info/finance
- Шурыгин А.М. Прикладная стохастика: робастность, оценивание, прогноз. М.: Финансы и статистика, 2000.
- 15. *Scott D.W.* Multivariate Density Estimation: Theory, Practice, and Visualization. N. Y.: John Wiley, 1992.
- 16. Лабунец Л.В. // Радиотехника. 1985. № 11. С. 47.
- 17. Лабунец Л.В. // Радиотехника. 1986. № 9. С. 64.
- 18. Лабунец Л.В. // РЭ. 2000. Т. 45. № 12. С. 1459.
- 19. Лабунец Л.В. // РЭ. 2001. Т. 46. № 4. С. 464.
- 20. *Суетин П.К.* Классические ортогональные многочлены. 2-е изд. М.: Наука, 1979.
- Справочник по специальным функциям с формулами, графиками и математическими таблицами / Под ред. Абрамовица М., Стиган И. М: Наука, 1979.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 57 № 6 2012