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Abstract—The estimates for the power spectrum of multidimensional uniform random fields in the
form of models of finite mixtures of standard spectra are proposed. The learning algorithm of the
models demonstrates improved convergence properties for degenerate spectra and small interclass dis-
tances in the frequency space, as well as for small volumes of the experimental data. Based on this, the
noncanonical models of uniform random fields are presented as a sum of statistically independent spa-
tial harmonics with random amplitudes and frequencies. The alternative representation of a multidi-
mensional spectrum as a sample of random frequencies allowed us to propose computationally effi-
cient algorithms of digital synthesis of background and underlying surface images with the topology of
spectral estimates that are adequate for the experimental data. The algorithms are free from simplifying
assumptions regarding the method of discretization of the field and functional form of the power spec-
tral density.
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INTRODUCTION
The functioning of optical-electronic, radar, and hydroacoustic control systems is related to the neces-

sity of analyzing rapid processes, which are characterized by non-Gaussian distributions and nonstation-
arity on the time interval of decision-making. For example, the specifics of correlation-extreme guidance
aircraft systems require taking into account the contribution of backgrounds or underlying surfaces in the
received signal. An attempt to describe the power spectrum of the corresponding random fields using the
traditional autoregression–moving average model, leads, as a rule, to an inadequate description of the sta-
tistical characteristics of the input influences in comparison with the experimental data. A significant
property of the analysis of the control system’s functioning is the small volume of experimental data. In
this situation, the classic nonparametric estimates of the fields’ statistics become inefficient.

Developing a theory of digital processing of the target fields and signals in the control systems requires
taking into account the above-mentioned constraints. Thus, one of the most complex problems is to create
a logically consistent sequence of theoretical and computational methods for the statistical modeling of
the input influences in the autonomous information systems of remote sensing.

An adequate statistical description of actual nonstationary non-Gaussian signals and noises in the
control systems requires models with random parameters. The values of these parameters represent a sam-
ple of their probability mixtures of standard distributions [1–4]. We will call such models randomized.
Identifying the parameters of these models requires, in turn, applying the methodology of the adaptation
and learning theory, including a powerful method of constructing the parametric models of multidimen-
sional non-Gaussian distributions such as the family of expectation-maximization (EM) algorithms [4].

The specifics of the functioning of remote sensing systems is associated with the necessity of locating
a target against the background of the underlying surface. A large number of studies is dedicated to the
problem of the statistical modeling of backgrounds and underlying surfaces with a specified or experimen-
tally measured power spectral density (PSD) , where  is the column vector of the
arguments in the frequency domain. However, there is still no final solution to the problems of digital syn-
thesis of multidimensional random fields based on constructing the effective statistical models and algo-
rithms that are free from the a priori simplifying assumptions regarding the functional form of the power
spectrum, the method of the field’s discretization, its type, and the large volume of experimental data.
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NONCANONICAL SPECTRAL MODEL 875
One of the possible solutions of this important problem is based on the use of randomized spectral models
and presented in this study.

1. STATEMENT OF THE PROBLEM
In comparison with the algorithmic models, the analytical models of random fields [2, 3] have a num-

ber of advantages. They provide a match between the covariation function and one-dimensional probabil-
ity density of the model and the actual influence for uniform random fields of a general form. Being the
determined functions of random arguments (parameters), the analytical (parametric) models are more
universal in the sense that they can be used in both the digital and analytical analysis of the functioning of
control systems.

The parametric models based on the spectral expansion method by Karhunen–Loève–Pugachev have
become widespread [5]. Their use is appropriate when the dimensionality of the random field does not
exceed two, and the observational interval is not more than 10 correlation radii of the field. The models
of one-dimensional input influences based on the spectral expansion method by Chernetskii are charac-
terized by simplicity and cost effectiveness [3]. The development of spectral expansions of uniform mul-
tidimensional random fields is the subject of a number of studies by Shalygin and Palagin [2]: they propose
modeling algorithms for a series of generic monotonic covariation functions. The question of mod-
eling non-Gaussian fields has not been comprehensively addressed. However, the fields with oscil-
lating covariation functions and nonnormal one-dimensional distributions are quite often encoun-
tered in practice [6–10].

We will represent the noncanonical spectral model of the initial N-dimensional Gaussian random field
 as a sum of statistically independent spatial harmonics  with random amplitudes am and fre-

quencies  [1, 2, 11]:

(1.1)

Here,  is the column vector of the arguments in the spatial domain;  =  is
the vector of the initial displacement [2]; and  and  are mutually independent samples
of random spatial frequencies and amplitudes.

It is important to note that a sample of random frequencies is an effective alternative (in terms of com-
putational costs) to a multidimensional regular discretization grid in the frequency domain. In other
words, in the context of noncanonical spectral models, the normalized PSD  acquires the sense of a
multidimensional probability density function  of the random frequency vector  [1, 2].

Thus, in accordance with model (1.1), the digital synthesis of a Gaussian random field with null math-
ematical expectation and unit variance at the first stage is reduced to the generation of amplitudes am. The

reversal method for a random value a with a symmetric Rayleigh distribution , 
yields the following modeling algorithm [12]: , where  and  are independent;  is uniformly
distributed in the interval [0, 1]; and  takes values ±1 with equal probability.

At the second stage, in accordance with the probability density function , random frequencies 
are generated. The field value at the final stage is calculated by formula (1.1) in any given point of the initial
space. Choosing the initial displacement vector  equal to three or five correlation intervals of the mod-
eled field ensures the uniformity and normality of its one-dimensional distribution at the number of har-
monics  [2].

2. RANDOMIZED SPECTRAL ANISOTROPIC MODEL
The standard spectral estimates are formed on a regular raster of the frequency space (Fig. 1a). How-

ever, for the fields with a dimensionality of at least two, it is more computationally effective to use the
alternative form of representation of the power spectrum as a scatter diagram (Fig. 1b). The coordinate
axes u1 and u2 of the two-dimensional grid of spatial frequencies in Fig. 1 have a dimensionality of m–1.
It is reasonable to represent the sample of random frequencies in the spectral model (1.1) as points in the
corresponding frequency space, which are classified into a finite number of statistically uniform clusters.
Such an interpretation is productive in the modeling of uniform anisotropic fields, since it substantiates
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876 BORZOV et al.

Fig. 1. Alternative representations of power spectrum of image: (a) regular raster; (b) sample of random frequencies.
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the approximation of the power spectrum of the field with a finite mixture of generic multidimensional
spectral densities. In this approach, the computationally effective algorithms for the identification of the
mixture parameters are based on the methods of the adaptation and learning theory.

A series of models of random fields with elliptical and multiplicative anisotropy are presented in [2].
However, such simplest kinds of anisotropy inadequately model the correlational structure of the majority
of actual influences of control systems [7–10]. Let us consider the procedure for immersing the spectral
model of a uniform anisotropic Gaussian random field into the space of frequency attributes.

In the parametric representation of a random field (1.1), it is rational to interpret the sample of random
frequencies  as a set of points in the N-dimensional space of images , i.e., represent
it as an N-dimensional scatter diagram. In this case, the anisotropy of the modeled field will be expressed
in the fact that the whole set of points is classified into a finite number of pairs of centrally symmetric uni-
form subsets (classes) that are grouped in the frequency space  in certain ranges of directions or
compact nonintersecting regions [7, p. 89; 9, p. 42].

It is rational to represent each uniform pair of centrally symmetric groups of points as a general popu-
lation, which is specified with its probability density as a two-component mixture of standard distributions

 = . The parameters  specify the position (with
the mathematical expectation vector ) and scale (with the covariation matrix Bk) of the kth centrally
symmetric partial distribution. In other words, the power spectrum  of the anisotropic field is con-
venient to approximate with a finite mixture of generic multidimensional spectral densities

(2.1)

which are specified with an accuracy to the final number of their parameters ,
B1, ..., BK). Here, pk is the weight of the kth anisotropic component of the field.

The advantage of representation (2.1) is obvious, since the digital modeling of the random frequency
vector Ω in this case is performed with the effective method of the superposition of the algorithms for
modeling standard random values [2, 12].

3. SPECTRAL MODELS IN THE MAHALANOBIS METRICS

A rather wide class of the random field power spectrum can be approximated with multidimensional
distributions in the Mahalanobis metrics  =  [1, 4, 13]. Within such
models, generic spectral densities  of anisotropic components are represented as N-dimensional
ellipsoidally symmetric distributions with different mathematical expectation vectors  and covariation
matrices  [13]:
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(3.1)

Here,  is the Mahalanobis metrics of the spectral subclass with

the center of the frequency group at the point with a radius vector ;  is the sur-

face area of a unit hypersphere in the N-dimensional frequency space; and  is a monotoni-
cally decreasing (as ) radial distribution with a finite (N – 1)th central moment . Three types
of radial basis functions became widespread in practice [4, 14, 15].

The Gauss function:

the Pierson function with the parameter :

the Student function with the parameter :

where  is the beta function and  is the gamma function.

4. LEARNING THE SPECTRAL MODEL
It is rational to identify the parameters of the spectral model (2.1) using an indirect method. Such an

approach involves a preliminary stage of selective estimation of the power spectrum  by the experi-
mentally measured “image” of a multidimensional random field. The Fourier analysis of the data with a
high frequency resolution and sufficiently low variance of the estimate is based on the use of the methods
of the linear prediction theory [16]. In particular, the autoregression spectral estimation of relatively small
units of data using a modified covariation method [17, 18] makes it possible to obtain reliable spectral esti-
mates and verify the adequacy of the modeled random field relative to the experimental measurements.

The effective realization of the step of identifying the parameters of model (2.1) is based on the use of
the Stochastic Weighing Maximization (SWM) algorithm [19]. The standard learning goal, in this case, is
the maximization of the Fisher likelihood functional:

The rational learning goal is the minimization of the Bhattacharya distance functional [19]:
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Solving these problems of conditional optimization using the method of indeterminate Lagrange mul-
tipliers yields a system of nonlinear equations [19] with respect to the parameters  of partial spectra. The
canonical form of this system that allows its solution by the method of successive approximations appears
as follows:

(4.1)

where

Here,  is the a posteriori spectrum (which acquires the sense of the a pos-
teriori probability density function within the randomized model) with parameters , which characterizes
the extent to which the spatial frequency vector  belongs to the kth spectral class. The vertical line in this
expression indicates the conditional character of the distribution similar to the notations adopted in the
Bayes models. The a posteriori spectra satisfy the following obvious properties:

The weight function  is determined by the functional of the quality of the mixture’s parameter
estimates:

The modifiers

depend on the choice of the type of radial distributions in the finite mixture model (2.1).
The multidimensional integrals in the equation system (4.1) have a distinct statistical sense. In partic-

ular, it is appropriate to interpret  and  as the a posteriori dispersion and modified dispersion of
the kth spectral class. Correspondingly,  and  acquire the sense of the a posteriori characteristics
of the position (mathematical expectation vector) and scale (covariation matrix) of the kth spectral class.

In a two-dimensional (N = 2) frequency space, the estimates of the above mentioned integrals do not
require significant computational resources, since they can be acquired based on the standard cubature
algorithms. Figure 2 shows the poly-Gaussian approximation  of the power spectrum  of the
radar image obtained as a result of remotely sensing the rough sea surface with a side-looking radar [7].
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Fig. 2. Poly-Gaussian approximation of power spectrum of radar sea image: (a) model; (b) model error.
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Fig. 3. Convergence of SWM learning algorithm for model: (a) by likelihood criterion; (b) by distance criterion.
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Fig. 4. Model image of rough sea surface.
The convergence of the SWM algorithm by the iterations i = 1, 2, … of successive approximations of the
search for the optimal mixture parameters (2.1) of the Gaussian partial spectra is illustrated in Fig. 3.
Curves 1 and 2 demonstrate the variations in the likelihood and distance functionals on the scales of the
left and right vertical axes, respectively. The results of the digital modeling of an image of the sea using the
spectral model (1.1) with 500 spatial harmonics are shown in Fig. 4.
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5. SWM LEARNING ALGORITHM OF THE SPECTRAL MODEL

In the frequency space with a dimensionality above two (N > 2), the efficient computational algorithm
for estimating the multidimensional integrals in the equation system (4.1) is based on the use of the essen-
tial sample method [12]. As shown in [19], for this purpose general it is rational to choose populations of
random values that are characterized by the distributions , . This method is implemented
by choosing a modified weight function:

The substitution of  into the expressions for the integrals of system (4.1) gives
the modified equation system by the iterations i = 1, 2, … of successive approximations:

(5.1)

Considering the equations

the multidimensional integrals in system (5.1) acquire a form that is convenient for estimation by the
Monte Carlo Method:

Here,  is the two-component mixture of standard distributions
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where

(5.3)

is the normalizing multiplier;  is the N-dimensional null column-vector;  is the

Euclidian distance in the space of the normalized frequencies  obtained with a decorrelating
transform [20]; and  and  are the matrices of singular numbers and eigenvectors of the covariation
matrix  of the spectral class.

The expressions for the integrals from the derivatives of the basis functions in formula (5.3) can be
found in the reference book [21]. The subsequent transforms in accordance with Eqs. (5.2) allow us to
obtain a family of N-dimensional ellipsoidally symmetric distributions.

Gauss distribution:

Pierson distribution:

Student distribution:

It can be easily seen that the partial spectra  are obtained by the correlating transform
 of the family of radial distributions by Gauss ; Pierson 

[4, p. 538] with the parameters  and ; or Student 
[4, p. 540] with the parameters  and .

It is important to note that the statistics  and  are in agreement with the w-weighted (in the
sense of L.D. Meshalkin [22]) characteristics of the position and scale of the kth modified partial spec-
trum.
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The quality functionals of the randomized model (2.1) of the field power spectrum are convenient to
calculate by the following formulas [19]:

Here, the w-weighted estimates of likelihood

and distance

of the kth spectral class are also obtained by the method of the essential sample from the distribution
.

The parameters of the spectral model (2.1) are identified using the SWM unsupervized learning algo-
rithm presented in [19]. The algorithm presets the initial approximations of the vector  of the param-
eters that correspond to the initial values of the quality functionals of the spectral density :

At the S-step of the ith iteration of the algorithm (i = 1, 2, …), the statistical modeling of the learning
samples is performed:

and

These samples are the realizations (independent in the population) of the standard random vectors
with distributions , , and . Here,  is the vector that takes the values 
with equal probability;  and  are the random frequency vectors, which correspond to the ellipsoi-
dally symmetric distributions

(5.4)

and

(5.5)

respectively.

As shown above, the effective algorithm for the statistical modeling of the random frequency vector 
realizes the correlating transform  [20, 23] of the standard random sample , m = ,
characterized by the N-dimensional radial distribution by Gauss , Pierson , IN) or

Student , depending on the chosen basis function  of distribution (5.4).

It is also obvious that modeling the standard random vector  requires the same algorithm as mod-
eling the vector , namely, . The only difference is that the standard random sample ,
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 is characterized by the N-dimensional radial distribution by Pierson  or Stu-

dent  for the corresponding basis function of the modified distribution (5.5).
It is important to note that the S-step of the SWM procedure for the power spectrum’s randomization

naturally provides the sample of the random frequency vector:

which is necessary for modeling the random field using spectral model (1.1). Here,  is
the random vector that follows the polynomial distribution with the parameters М and 

[14]; i.e.,  are the discrete random values that equal 0 or 1 with probabilities  and pk, so that

 = M.
At the W-step of the ith iteration of the SWM procedure for the power spectrum randomization, the

average weights and w-weighted characteristics of the position and scale of the partial spectra are esti-
mated using the essential sample method:

(5.6)

It is important to underline that, unlike the selective EM algorithm [24], the weight function 
is practically independent of the interclass distances. Thus, an acceptable convergence rate of the SWM
algorithm for the randomization of mixture (2.1) should be expected in the case when the partial spectra
in the Mahalanobis metrics significantly overlap.

The M-step of the power spectrum’s randomization procedure realizes the ith iteration of the search
for the solution of modified equation system (5.1) of the successive approximation method. The corre-
sponding current estimates of the quality functionals for the vector  of the partial spectra parameters
are calculated by the formulas

Refining the mixture’s parameters is continued if at least one of the following test conditions is ful-
filled: a priori weights ; position characteristics (mean frequency vector)

; and scales (covariation matrices)  of spectral classes (k =
1, 2, …, K). Testing the highest number of iterations  insures against a poor choice of the signifi-
cance levels , , and  of the criteria.

Note that the SWM unsupervized learning algorithm contains two nested cycles. The inner cycle for
each spectral class performs the statistical modeling of random frequencies at the S-step and forms esti-
mates (5.6) of the multidimensional integrals in system (5.1) at the W-step. The outer cycle provides the
optimization of the spectral model parameters (2.1) at the M-step. It should also be noted that esti-
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Fig. 5. Satellite radar images: (a) sea surface; (b) mountainous terrain.

(а) (b)

Fig. 6. Structural components of radar image of sea surface: (a) strongly correlated (low-frequency); (b) moderately cor-
related (high-frequency).
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mates (5.6) implement the batch learning mode by the sample of random frequencies. These estimates
can be represented in the recurrent form of the successive or combined learning modes of the model [19, 25].

6. COMPUTATIONAL EXPERIMENT

We studied the images obtained as a result of remotely sensing the Earth’s surface with satellite syn-
thetic aperture radars. Figures 5a and 5b show the fragments (256 × 256 pixels) of radar images of the east-
ern part of the Norwegian Sea [9, p. 71] and mountainous terrain near the city of Muzaffarabad [26] of
the Pakistani territory of Azad Jammu and Kashmir acquired by the spacecraft ALMAZ-1 and TerraSAR-X,
respectively. The spatial resolution of ALMAZ-1 is  10–15 m; the spatial resolution of TerraSAR-X is

 1–2.9 m.

In our opinion, it is rational to study the correlative-spectral properties of the images using the meth-
ods of structural data analysis [27], in particular, the multiresolution analysis (MRA) in the basis of a two-
dimensional discrete wavelet transform. This methodology allows us to efficiently distinguish the strongly

Δ =1,2x
Δ =1,2x
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Fig. 7. Structural components of radar image of mountainous terrain: (a) strongly correlated (low-frequency); (b) mod-
erately correlated (high-frequency).
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Fig. 8. Cluster structure of two-dimensional sample spectra of high-frequency components of radar images: (a) sea sur-
face; (b) mountainous terrain.
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correlated (low-frequency, i.e., trend) and moderately correlated (high-frequency, i.e., quasi-cyclic)
components (Figs. 6, 7). In our experiment, we applied the Daubechies wavelets of the 10th degree and
nine levels of expansion.

As the trend component of the images of the sea surface, we chose the sum of the ninth detailed com-
ponent and the approximating component of the MRA (Fig. 6a). The sum of the first to the eighth detail
components is taken as an estimate of the quasi-cyclic component (Fig. 6b). The estimate of the trend for
the mountainous terrain’s image represents the sum of the eighth and ninth detailed and approximating
components (Fig. 7a). The sum of the first to seventh detailed components is taken as an estimate of the
quasi-cyclic component (Fig. 7b).

The cluster structure of the two-dimensional Schuster periodogram
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Fig. 9. Structural PSD components of radar image of sea surface: (a) isotropic; (b) anisotropic.

(a)

1.3
1.1
0.9
0.7

PS
D

0.5
0.3
�0.4

�0.2
0

0.2
0.4

F1 F2

0.4

Quadratic
PSD

0.2
0

�0.2
�0.4

(b)

50

40

30

20

PS
D

10
0

�0.4
�0.2

0
0.2

0.4
F1 F2

0.4

PG
PSD

0.2
0

�0.2
�0.4
of the quasi-cyclic components  of the reference images is demonstrated by the scatter diagrams
(Fig. 8) of logarithmic periodograms  converted to the standard range [0, 1] in the
coordinates of the normalized spatial frequencies:

It is important to note that the classes of a finite mixture (2.1) of generic spectral densities are clearly
identified by the structural components of the images; this, in turn, significantly simplifies the procedure
of selecting the initial approximations for the parameters of this model. In particular, periodogram (6.1)
of the sum of the first to the seventh MRA detailed components, excluding the second, ideally describes
the central spectral cluster of the power spectrum of the quasi-cyclic component of the image of the sea
surface (Fig. 8). The periodogram of the second detail component describes the side spectral clusters. In
other words, the structural decomposition of the radar image of the sea and further spectral analysis of its
components allows revealing the main systems and monitoring the parameters of the wind-driven rough
water surface.

The classical method of estimating the PSD involves, as is known, the procedures of pseudoaveraging
of the Shuster periodogram (6.1). In our experiment, such smoothing procedures consist of two stages.
At the first stage, the two-dimensional MRA of the periodograms , i = 1, 2 of the quasi-cyclic
components of the reference images is performed. Here, we also applied the Daubechies wavelets of the
10th degree and nine levels of expansion. As a result of this step, the isotropic PSD components

 =  of the images of the sea (Fig. 9a) and mountainous terrain (Fig. 10a) were
distinguished. Here,  are the dispersions of the isotropic PSD components. The sums of the ninth
detailed and approximating MRA components were selected as nonparametric estimates of these compo-
nents. The further analysis has shown that the isotropic PSD components are closely approximated by the
two-dimensional polynomials of the second degree (Table 1).

The anisotropic components of the Shuster periodogram (6.1) obviously represent the residuals, i.e.,
 = . At the second stage, the two-dimensional recurrent digital filtering

of the residuals with a simple moving average with an 11 × 11 pixel mask is performed. The results of the
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Table 1. Polynomial approximation parameters of isotropic PSD component

Image p0 b0 b1 b2 b12

Sea surface 276.31 0.3820 1.3018 –1.8111 –1.8111 0.2286
Mountainous terrain 135.45 0.3631 1.3616 –2.1697 –2.1697 0.2487

( )isod
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Fig. 10. Structural PSD components of radar image of mountainous terrain: (a) isotropic; (b) anisotropic.
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six-fold smoothing by the procedure presented in [28] are chosen as the nonparametric estimates of the

anisotropic PSD components  of the sea (Fig. 9b) and mountainous

terrain (Fig. 10b). Here,  are the dispersions of the anisotropic PSD components. The further anal-
ysis has shown that the anisotropic PSD components are clearly approximated by the poly-Gaussian
(PG) models with the parameters listed in Tables 2 and 3.

As a result, the parametric model of the finite mixture (2.1) of the normalized power spectrum of the
images is obtained:

(6.2)
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Table 2. Parameters of poly-Gaussian approximation of anisotropic PSD component of sea surface image:  =
224.85

k

1 0.1828 0.0 0.0 0.0781 0.0436 –0.8223
2 0.2176 0.1628 0.1392 0.0346 0.0374 –0.0773
3 0.2176 –0.1628 –0.1392 0.0346 0.0374 –0.0773

( )anisod

kp ,1ka ,2ka σ ,1k σ ,2k kr

Table 3. Parameters of poly-Gaussian approximation of anisotropic PSD component of mountainous terrain image:
 = 119.31

k

1 0.0637 0.0 0.0 0.0141 0.011 0.0
2 0.2866 –0.0105 0.0145 0.02 0.0158 0.0
3 0.2866 0.0105 –0.0145 0.02 0.0158 0.0

( )anisod

kp ,1ka ,2ka σ ,1k σ ,2k kr
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Fig. 11. Statistical modeling results: (a) sample of random frequencies; (b) model images of quasi-cyclic component of
sea surface.
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where the index of the images i = 1, 2 is not shown for clarity.
Figure 11a illustrates the scatter diagram of the power spectrum’s frequencies of the quasi-cyclic (high-

frequency) component of the radar image of the sea surface (Fig. 6b). The statistical modeling of the ran-
dom frequency vector  was performed using the composition method [2, 12] in accor-
dance with model (6.2) of the finite mixture of standard PSDs. The polynomial isotropic spectral com-
ponent (Fig. 9a) was simulated by the conventional distributions and reversal methods [2]. The poly-
Gaussian anisotropic component (Fig. 9b) was modeled by the composition and correlating transform
methods [20, 23]. The radar image of the quasi-cyclic (high-frequency) component of the sea surface that
is synthesized using the procedure from Section 5 is illustrated in Fig. 11b.

CONCLUSIONS
We have presented the noncanonical spectral model of multidimensional uniform random fields,

whose correlative-spectral properties are adequate to the experimental data. An algorithm that does not
require a significant increase in the computational costs with increasing dimensionality of the problem has
been developed to identify the parameters of the spectral model. An original procedure has been proposed
for the spectral analysis of the images, in particular, the radar images acquired from the remote sensing of
the Earth’s surface from space. We have obtained parametric models of the power spectrum of the isotro-
pic and anisotropic structural components of the experimental data which ensure the efficient statistical
modeling of the images of the underlying surfaces.
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